Neonatal Glucose Metabolism

  • Richard M. Cowett
  • Hussien M. Farrag


While the fetus is completely dependent on its mother for glucose and other nutrient transfer across the placenta, the adult is completely independent, especially one who is neither pregnant nor diabetic. The neonate is considered to be in a transition between the complete dependence of the fetus and the complete independence of the adult. The neonate must become independent after birth, balancing between glucose deficiency and excess to maintain euglycemia. The dependence of the conceptus on the mother for continuous substrate delivery in utero contrasts with the variable and intermittent exogenous oral intake that is the hallmark of the neonatal period and beyond. Development of carbohydrate homeostasis results from a balance between the specific morbidities to which the neonate is subject, developing hormonal, enzymatic, neural regulation, and substrate availability. Maturation of neonatal homeostasis is influenced by the integrity of the specific pathways of intermediary metabolism important in glucose metabolism (see Chapters 6 to 9, 29, and 31). The heterogeneity that is the hall-mark of neonatal glucose metabolism is illustrated by the multiplicity of conditions producing or associated with neonatal hypo- and hyperglycemia. The maintenance of euglycemia especially in the sick or low birth weight neonate is difficult, which reinforces the concept that the neonate is vulnerable to carbohydrate disequilibrium. This topic has been the subject of a number of recent evaluations.1–10


Glucose Production Blood Glucose Concentration Plasma Glucose Concentration Glucose Infusion Plasma Insulin Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cowett RM. Pathophysiology, diagnosis, and management of glucose homeostasis in the neonate. Curr Probl Pediatr 1985; 15: 1–47.PubMedGoogle Scholar
  2. 2.
    Cowett RM. Utilization of glucose during total parenteral nutrition. In: Lebenthal E, ed. Total parenteral nutrition in children: indications, complications and pathophysiological considerations. New York: Raven Press, 1986: 17–27.Google Scholar
  3. 3.
    Ogata ES. Carbohydrate metabolism in the fetus and neonate and altered neonatal glucoregulation. Pediatr Clin North Am 1986; 33: 25–45.PubMedGoogle Scholar
  4. 4.
    Pildes RS, Pyati SP. Hypoglycemia and hyperglycemia in tiny infants. Clin Perinatol 1986; 13: 2351–2375.Google Scholar
  5. 5.
    Cowett RM, Stern L. Carbohydrate homeostasis in the fetus and newborn. In: Avery G, ed. Neonatology pathophysiology and management of the newborn. 3rd ed. Philadelphia: Lippincott, 1987: 691–709.Google Scholar
  6. 6.
    Cowett RM, Schwartz R. Glucose homeostasis in the newborn. In: Stern L, Vert P, eds. Neonatal medicine. New York: Masson, 1987: 809–831.Google Scholar
  7. 7.
    Cowett RM. Carbohydrate metabolism in the premature and compromised infant. In: Lebenthal E, ed. Textbook of gastroenterology and nutrition in early childhood. 2nd ed. New York: Raven Press, 1989: 311–326.Google Scholar
  8. 8.
    Ogata ES. Problems of glucose metabolism in the extremely-low birth weight infant. In: Cowett RM, Hay WW, Jr, eds. The micropremie: the next frontier. Report of the ninety-ninth Ross Conference on Pediatric Research. Columbus, OH: Ross Laboratories, 1990: 55–63.Google Scholar
  9. 9.
    Cowett RM. Hypo and hyperglycemia in the newborn. In: Polin RA, Fox WW, eds. Neonatal and fetal medicine; physiology and pathophysiology. Philadelphia: WB Saunders, 1992: 406–418.Google Scholar
  10. 10.
    Cornblath M, Schwartz R. Disorders of carbohydrate metabolism in infancy. 3rd ed. Boston: Blackwell Scientific, 1991.Google Scholar
  11. 11.
    Cowett RM, Barcohana Y, Oh W. Human fetal and neonatal insulin response to maternal hyperglycemia at cesarean section (C/S). Pediatr Res 1981; 15: 506A.Google Scholar
  12. 12.
    Cornblath M, Reisner SH. Blood glucose in the neonate and its clinical significance. N Engl J Med 1965; 273: 378–381.PubMedCrossRefGoogle Scholar
  13. 13.
    Srinivasan G, Pildes RS, Cattamanchi G, et al. Plasma glucose values in normal neonates: a new look. J Pediatr 1986; 109: 114–117.PubMedCrossRefGoogle Scholar
  14. 14.
    Heck LJ, Erenberg A. Serum glucose levels in the term neonate during the first 48 hours of life. Pediatr Res 1987; 110: 119–122.Google Scholar
  15. 15.
    Pildes RS. Neonatal hyperglycemia. J Pediatr 1986; 109: 905–907.PubMedCrossRefGoogle Scholar
  16. 16.
    Dweck HS, Cassady G. Glucose intolerance in infants of very low birth weight. I. Incidence of hyperglycemia in infants of birth weights 1100 grams or less. Pediatrics 1974; 53: 189–195.PubMedGoogle Scholar
  17. 17.
    Zarif M, Pildes RS, Vidyasagar D. Insulin and growth hormone responses in neonatal hyperglycemia. Diabetes 1976; 25: 428–433.PubMedCrossRefGoogle Scholar
  18. 18.
    Cowett RW, Oh W, Pollak A, et al. Glucose disposal of low birth weight infants: steady state hyperglycemia produced by constant intravenous glucose infusion. Pediatrics 1979; 63: 389–396.PubMedGoogle Scholar
  19. 19.
    Cowett AA, Farrag HM, Gelardi NL, Cowett RM. Hyperglycemia in the micropremie: evaluation of the metabolic disequilibrium during the neonatal period. Prenatal and Neonatal Medicine (in press).Google Scholar
  20. 20.
    Koh TH, Aynsley-Green A, Tarbit M, et al. Neural dysfunction and hypoglycemia. Arch Dis Child 1988; 63: 1353–1358.PubMedCrossRefGoogle Scholar
  21. 21.
    Stanley CA, Anday EX, Baker L, et al. Metabolic fuel and hormone response to fasting in newborn infants. Pediatrics 1979; 64: 613–619.PubMedGoogle Scholar
  22. 22.
    Frantz ID III, Medina G, Taeusch HW Jr. Correlation of Dextrostix values with true glucose in the range less than 50 mg/dl. J Pediatr 1975; 87: 417–420.PubMedCrossRefGoogle Scholar
  23. 23.
    Perelman RH, Gutcher GR, Engle MJ, et al. Comparative analysis of four methods for rapid glucose determination in neonates. Am J Dis Child 1982; 136: 1051–1053.PubMedGoogle Scholar
  24. 24.
    Wilkins BH, Kaira D. Comparison of blood glucose test strips in the detection of neonatal hypoglycemia. Arch Dis Child 1982; 57: 948–960.PubMedCrossRefGoogle Scholar
  25. 25.
    Conrad PD, Sparks JW, Osberg I, et al. Clinical application of a new glucose analyzer in the neonatal intensive care unit: comparison with other methods. J Pediatr 1989; 114: 281–287.PubMedCrossRefGoogle Scholar
  26. 26.
    Lin HC, Maguire C, Oh W, et al. Accuracy and reliability of glucose reflectance meters in the high risk neonate. J Pediatr 1989; 115: 998–1000.PubMedCrossRefGoogle Scholar
  27. 27.
    Cowett RM, D’Amico LB. Accuracy and reliability of glucose reflectance meters in the high risk neonate. Letter to the editor. J Pediatr 1992; 120: 1002.PubMedGoogle Scholar
  28. 28.
    Innanen VT, Deland ME, deCampos et al. Point-of care glucose testing in the neonatal intensive care unit is facilitated by the use of the Ames Glucometer Elite electrochemical glucose meter. J Pediatr 1997; 130: 15 1155.Google Scholar
  29. 29.
    Holtrop PC, Madison KA, Kiechle FL, et al. A comparison of chromagen test strip (chemstrip bG) and serum glucose values in newborns. Am J Dis Child 1990; 144: 183–185.PubMedGoogle Scholar
  30. 30.
    Grazaitis DM, Sexton WR. Erroneously high dextostix values caused by isopropyl alcohol. Pediatrics 1980; 66: 221–223.PubMedGoogle Scholar
  31. 31.
    Jain R, Myers TF, Kahn SE, et al. How accurate is glucose analysis in the presence of multiple interfering substances in the neonate? (glucose analysis and interfering substances). J Clin Lab Anal 1995; 10: 13–16.CrossRefGoogle Scholar
  32. 32.
    Cowett RM, D’Amico LB. Capillary (heelstick) versus venous blood sampling for the determination of glucose concentration in the neonate. Biol Neonate 1992; 62: 32–36.PubMedCrossRefGoogle Scholar
  33. 33.
    Shelley HJ, Bassett JM. Control of carbohydrate metabolism in the fetus and newborn. Br Med Bull 1975; 31: 37–43.PubMedGoogle Scholar
  34. 34.
    Cornblath M, Schwartz R, Aynsley-Green A, et al. Hypoglycemia in infancy: the need for a rationale definition. Pediatrics 1990; 85: 834–837.PubMedGoogle Scholar
  35. 35.
    Fluge G. Clinical aspects of neonatal hypoglycemia. Acta Paediatr Scand 1974; 63: 826–832.PubMedCrossRefGoogle Scholar
  36. 36.
    Gutberlet RL, Cornblath M. Neonatal hypoglycemia revisited, 1975. Pediatrics 1976; 58: 10–17.PubMedGoogle Scholar
  37. 37.
    Milner RDG. Annotation-neonatal hypoglycemia. A critical appraisal. Arch Dis Child 1972; 47: 679–682.PubMedCrossRefGoogle Scholar
  38. 38.
    Senior B. Current concepts. Neonatal hypoglycemia. N Engl J Med 1973; 289: 790–793.PubMedCrossRefGoogle Scholar
  39. 39.
    Cornblath M, Odell GB, Levin EY. Symptomatic neonatal hypoglycemia associated with toxemia of pregnancy. J Pediatr 1959; 55: 545–562.PubMedCrossRefGoogle Scholar
  40. 40.
    Raivio KO, Hallman N. Neonatal hypoglycemia. Occurrence of hypoglycemia in patients with various neonatal disorders. Acta Paediatr Scand 1968; 57: 517–521.PubMedCrossRefGoogle Scholar
  41. 41.
    Lubchenco LO, Bard H. Incidence of hypoglycemia in newborn infants classified by birth weight and gestational age. Pediatrics 1971; 47: 831–838.PubMedGoogle Scholar
  42. 42.
    deLeeuw R, deVries IL. Hypoglycemia in small for dates newborn infants. Pediatrics 1976; 58: 18–22.Google Scholar
  43. 43.
    Koivisto M, Jouppila P. Neonatal hypoglycemia and maternal toxaemia. Acta Paediatr Scand 1974; 63: 743749.Google Scholar
  44. 44.
    Kliegman R. Alterations of fasting glucose and fat metabolism in intrauterine growth retarded newborn dogs. Am J Physiol 1989; 256: E380–E385.PubMedGoogle Scholar
  45. 45.
    Economides DL, Proudler A, Nicolardes KH. Plasma insulin in appropriate and small for gestational age fetuses. Am J Obstet Gynecol 1989; 160: 1091–1094.PubMedGoogle Scholar
  46. 46.
    Bussey ME, Finley S, LaBarbera A, et al. Hypoglycemia in the newborn growth retarded rat: delayed phosphoenol pyruvate carboxy kinase induction despite increased glucagon availability. Pediatr Res 1985; 19: 363–367.PubMedCrossRefGoogle Scholar
  47. 47.
    Haymond MW, Karl IE, Pagliara AS. Increased gluconeogenic substrate in the small gestation age infant. N Engl J Med 1974; 291: 322–328.PubMedCrossRefGoogle Scholar
  48. 48.
    Williams PR, Fiser RH Jr, Sperling MA, et al. Effects of oral alanine feeding of blood glucose, plasma glucagon, and insulin concentrations in small for gestational age infants. N Engl J Med 1975; 292: 612–614.PubMedCrossRefGoogle Scholar
  49. 49.
    Reisner SH, Aranda JV, Colle E, et al. The effect of intravenous glucagon on plasma amino acids in the newborn. Pediatr Res 1973; 7: 184–191.PubMedCrossRefGoogle Scholar
  50. 50.
    Carter PE, Lloyd DJ, Duffy P. Glucagon for hypoglycemia in infants small for gestational age. Arch Dis Child 1988; 63: 1264–1266.PubMedCrossRefGoogle Scholar
  51. 51.
    Mestyan MJ, Schultz K, Soltesz G, et al. The metabolic effects of glucagon infusion in normoglycemic and hypoglycemic small for gestational age infants. Changes in plasma amino acids. Acta Paediatr Acad Sci Hung 1976; 17: 245–253.PubMedGoogle Scholar
  52. 52.
    Sperling MA, Grajwer L, Leake RD, et al. Effects of somatostatin (SRIF) infusion on glucose homeostasis in newborn lambs: evidence for a significant role of glucagon. Pediatr Res 1977; 11: 962–967.PubMedCrossRefGoogle Scholar
  53. 53.
    Salle BL, Ruiton-Ugliengo A. Effects of oral glucose and protein load on plasma glucagon and insulin concentrations in small for gestational age infants. Pediatr Res 1977; 11: 108–112.PubMedCrossRefGoogle Scholar
  54. 54.
    Cowett RM, Susa JB, Oh W, et al. Glucose kinetics in glucose infused small for gestational age infants. Pediatr Res 1984; 18: 74–79.PubMedGoogle Scholar
  55. 55.
    Flecknell PA, Wootton R, Royston JP, et al. Glucose homeostasis in the newborn: effects of an intravenous glucose infusion in normal and intrauterine growth retarded neonatal piglets. Biol Neonate 1987; 52: 205–215.PubMedCrossRefGoogle Scholar
  56. 56.
    Ogata ES, Paul RI, Finley SL. Limited maternal field availability due to hyperinsulinemia retards fetal growth and development in the rat. Pediatr Res 1987; 22: 432–437.PubMedCrossRefGoogle Scholar
  57. 57.
    Sann L, Morel Y, Lasne Y. Effect of hydrocortisone on intravenous glucose tolerance in small for gestational age infants. Heiv Paediatr Acta 1983; 38: 475–482.Google Scholar
  58. 58.
    Van Toledo-Eppinga L, Houdijk MC, Delemarre-Van De Waal HA, et al. Leucine and glucose kinetics during growth hormone treatment in intrauterine growth retarded preterm infants. Am J Physiol 1996; 270: E451–455.PubMedGoogle Scholar
  59. 59.
    Beard AG, Panos, TC, Marasigan, BV, et al. Perinatal stress and the premature neonate. Effect of fluid and caloric deprivation on blood glucose. J Pediatr 1966; 68: 329–343.PubMedCrossRefGoogle Scholar
  60. 60.
    Beard AG. Neonatal hypoglycemia. J Perinatol Med 1975; 3: 219–225.CrossRefGoogle Scholar
  61. 61.
    Tejani N, Lipshitz F, Harper RG. The responses to an oral glucose load during convalescence from hypoxia in newborn infants. J Pediatr 1979; 94: 792–796.PubMedCrossRefGoogle Scholar
  62. 62.
    Collins JE, Leonard JV. Hyperinsulinism in asphyxiated and small for dates infants with hypoglycemia. Lancet 1984; 1: 311–313.CrossRefGoogle Scholar
  63. 63.
    Jansen RD, Hayden MK, Ogata ES. Effects of asphyxia at birth on postnatal glucose regulation in the rat. J Dev Physiol 1984; 6: 473–483.PubMedGoogle Scholar
  64. 64.
    Mann TP, Elliott RIK. Neonatal cold injury due to accidental exposure to cold. Lancet 1957; 1: 229–234.CrossRefGoogle Scholar
  65. 65.
    Schiff D, Stern L, Leduc J. Chemical thermogenesis in newborn infants: catecholamine excretion and the plasma nonesterified fatty acid response to cold exposure. Pediatrics 1966; 37: 577–582.PubMedGoogle Scholar
  66. 66.
    Close WH, LeDividish J, Dulee PH. Influence of environmental temperature on glucose tolerance and insulin response in the newborn piglet. Biol Neonate 1985; 47: 84–91.PubMedCrossRefGoogle Scholar
  67. 67.
    Yeung CY. Hypoglycemia in neonatal sepsis. J Pediatr 1970; 77: 812–817.PubMedCrossRefGoogle Scholar
  68. 68.
    LaNaoue KF, Mason AD Jr, Daniels JP. The impairment of glucogenesis by gram negative infection. Metabolism 1968; 17: 606–611.CrossRefGoogle Scholar
  69. 69.
    Yeung CY, Lee VMY, Yeung CM. Glucose disappearance rate in neonatal infection. J Pediatr 1973; 83: 486489.Google Scholar
  70. 70.
    Fitzgerald MJ, Goto M, Myers TF, et al. Early metabolic effects of sepsis in the preterm infant: lactic acidosis and increased glucose requirement. J Pediatr 1992; 121: 951–955.PubMedCrossRefGoogle Scholar
  71. 71.
    Shelley HJ. Glycogen reserves and their changes at birth and in anoxia. Br Med Bull 1972; 17: 137–143.Google Scholar
  72. 72.
    Benzing G, Schubert W, Hug G, et al. Simultaneous hypoglycemia and acute congestive heart failure. Circulation 1969; 40: 209–216.PubMedCrossRefGoogle Scholar
  73. 73.
    Amatayakul O, Cumming GR, Haworth JC. Association of hypoglycemia with cardiac enlargement and heart failure in newborn infants. Arch Dis Child 1970; 45: 717–720.PubMedCrossRefGoogle Scholar
  74. 74.
    Haymond MW, Strauss AW, Arnold KJ, et al. Glucose homeostasis in children with severe cyanotic congenital heart disease. J Pediatr 1979; 95: 220–227.PubMedCrossRefGoogle Scholar
  75. 75.
    Kerkering KW, Robertson LW, Kodroff MB, et al. Grand rounds series: hypoglycemia and unilateral pulmonary edema in a newborn. Pediatrics 1980; 65: 326–330.PubMedGoogle Scholar
  76. 76.
    Lindell KH, Sabel KG, Eriksson BD, et al. Glucose metabolism and insulin secretion in infants with symptomatic ventricular septal defect. Acta Paediatr scand 1989; 78: 620–626.CrossRefGoogle Scholar
  77. 77.
    Vidnes J, Oyasaeter S. Glucagon deficiency causing severe neonatal hypoglycemia in a patient with normal insulin secretion. Pediatr Res. 1977; 11: 943–949.PubMedCrossRefGoogle Scholar
  78. 78.
    Vidnes J, Sovik O. Gluconeogenesis in infancy and childhood. Studies on the glucose production from alanine in three cases of persistent neonatal hypoglycaemia. Acta Paediatr Scand 1976; 65: 297–305.PubMedCrossRefGoogle Scholar
  79. 79.
    Vidnes J, Sovik O. Gluconeogenesis in infancy and childhood. Deficiency of the extramitochondrial form of hepatic phosphoenolpyruvate carboxykinase in a case of persistent neonatal hypoglycemia. Acta Paediatr 1976; 65: 307–312.CrossRefGoogle Scholar
  80. 80.
    Hers H-G, Van Hoof F, de Barsy T. Glycogen storage diseases. In: Scriver CR, Beaudet AI, Sly WS, et al., eds. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill, 1989: 425–452.Google Scholar
  81. 81.
    Pagliara AS, Karl IE, Keating JP, et al. Hepatic fructose1,6-diphosphatase deficiency: a cause of lactate acidosis and hypoglycemia in infancy. J Clin Invest. 1972; 51: 2115–2123.PubMedCrossRefGoogle Scholar
  82. 82.
    Ralleson ML, Mukle AW, Zigrang WD. Hypoglycemia and lactate acidosis associated with fructose-1,6diphosphatase deficiency. J Pediatr 1979; 94: 933–936.CrossRefGoogle Scholar
  83. 83.
    Levy HL, Hammersen G. Newborn screening for galactosemia and other galactose metabolic defects. J Pediatr 1978; 92: 871–887.PubMedCrossRefGoogle Scholar
  84. 84.
    Barrett CT, Oliver TK Jr. Hypoglycemia and hyperinsulinism in infants with erythroblastosis fetalis. N Engl J Med 1968; 278: 1260–1263.PubMedCrossRefGoogle Scholar
  85. 85.
    Molsted-Pedersen L, Trautner H, Jorgensen KR. Plasma insulin and k values during intravenous glucose tolerance test in newborn infants with erythroblastosis foetalis. Acta Paediatr Scand 1973; 62: 11–16.PubMedCrossRefGoogle Scholar
  86. 86.
    Oh W, Yap LL, D’Amodio MD. Hypoglycemia in severely affected Rh erythroblastotic infants. J Pediatr 1969; 74: 813A.Google Scholar
  87. 87.
    Schiff D, Lowy C. Hypoglycemia and excretion of insulin in urine in hemolytic disease of the newborn. Pediatr Res 1970; 4: 280–285.PubMedCrossRefGoogle Scholar
  88. 88.
    Katz CM, Taylor PM. Incidence of low birth weight in children with severe mental retardation. Am J Dis Child 1967; 114: 80–90.PubMedGoogle Scholar
  89. 89.
    Schiff D, Aranda JV, Chan G, et al. Metabolic effects of exchange transfusions. Effect of citrated and of heparinized blood on glucose, non-esterified fatty acids, 2-(4 hydroxybenzeneazo) benzoic acid binding and insulin. J Pediatr 1971; 78: 603–609.PubMedCrossRefGoogle Scholar
  90. 90.
    Schiff D, Aranda JC, Colle E, et al. Metabolic effects of exchange transfusion. Delayed hypoglycemia following exchange transfusion with citriated blood. J Pediatr 1971; 79: 589–593.PubMedCrossRefGoogle Scholar
  91. 91.
    Beckwith JB, Wang CI, Donel GN. Hyperplastic fetal visceromegaly with macroglossia, omphalocele, cytomegaly of adrenal fetal cortex, postnatal somatic gigantism, and other abnormalities. Newly recognized syndrome. Proceedings of the American Pediatrics Society, Seattle, 1964; June 16–18. (Abstract 41).Google Scholar
  92. 92.
    Wiedemann HR. Complexe malformatif familiale avec hernie ombilicale et macroglossie-un syndrome nouveau? J Genet Hum 1964; 13: 223.PubMedGoogle Scholar
  93. 93.
    Schiff D, Colle EC, Wells D, et al. Metabolic aspects of the Beckwith-Wiedemann syndrome. J Pediatr 1973; 82: 258267.Google Scholar
  94. 94.
    Heitz PU, Kloppel G, Hacki WH, et al. Nesidioblastosis: the pathologic basis of persistent hyperinsulinemic hypoglycemia in infants. Diabetes 1977; 26: 637–642.CrossRefGoogle Scholar
  95. 95.
    Schwartz SS, Rich BH, Lucky AW, et al. Familial nesidioblastosis: severe neonatal hypoglycemia in two families. Pediatrics 1979; 95: 44–53.CrossRefGoogle Scholar
  96. 96.
    Woo D, Scopes JW, Polak JM. Idiopathic hypoglycemia in situ with morphological evidence of nesidioblastosis of the pancreas. Arch Dis Child 1976; 51: 528–531.PubMedCrossRefGoogle Scholar
  97. 97.
    Hirsch HJ, Loo S, Evans N, et al. Hypoglycemia of infancy and nesidioblastosis studies with somatostatin. N Engl J Med 1977; 296: 1323–1326.PubMedCrossRefGoogle Scholar
  98. 98.
    Baerentsen H. Case report: neonatal hypoglycemia due to an islet cell adenoma. Acta Paediatr Scand 1973; 62: 207–210.PubMedCrossRefGoogle Scholar
  99. 99.
    Burst NRM, Campbell JR, Castro A. Congenital islet cell adenoma causing hypoglycemia in a newborn. Pediatrics 1971; 47: 605–610.Google Scholar
  100. 100.
    Habbick BJ, Cram RW, Miller KR. Neonatal hypoglycemia resulting from islet cell adenomatosis. Am J Dis Child 1977; 131: 210–212.PubMedGoogle Scholar
  101. 101.
    Gruppuso PA, DeLuca F, O’Shea PA, et al. Near total pancreatectomy for hyperinsulinism. Spontaneous remission of resultant diabetes. Acta Paediatr Scand 1985; 74: 311–315.PubMedCrossRefGoogle Scholar
  102. 102.
    Solt’esz G, Jenkins PA, Aynsley-Green A. Hyperinsulinemic hypoglycemia in infancy and childhood: a practical approach to diagnosis and medical treatment based on experience of 18 cases. Acta Paediatr Hung 1984; 25: 319–332.Google Scholar
  103. 103.
    Aynsley-Green A, Jenkin P, Tronier B, et al. Plasma pro-insulin and C peptide concentrations in children with hyperinsulinemic hypoglycemic. Acta Paediatr Scand 1984; 73: 359–363.PubMedCrossRefGoogle Scholar
  104. 104.
    W’uthrich C, Schubiger G, Zuppinger K. Persistent neonatal hyperinsulinemia hypoglycemia in two siblings successfully treated with diazoxide. Heiv Paediatr Acta 1986; 41: 455–459.Google Scholar
  105. 105.
    Bruining GJ, Bosschaart AN, Aarsen RS, et al. Normalization of glucose homeostasis by a long acting somatostatin analog 201–995 in a newborn with nesidioblastosis. Acta Endocrinol Suppl (Copenh) 1986; 279: 275–278.Google Scholar
  106. 106.
    Glaser B, Landau H, Smilouici A, et al. Persistent hyperinsulinemic hypoglycemia of infancy: long term treatment with the somatostatin analogue sandostatin. Clin Endocrinol 1989; 31: 71–80.CrossRefGoogle Scholar
  107. 107.
    Gould UE, Mamoli UA, Dardi LE, et al. Nesidiodysplasia and nesidioblastosis of infancy: structural and functional correlations with the syndrome of hyperinsulinemia hypoglycemia. Pediatr Pathol 1983; 1: 7–31.PubMedCrossRefGoogle Scholar
  108. 108.
    Bruining GJ. Recent advances in hyperinsulinemism and the pathogenesis of diabetes mellitus. Curr Opin Pediatr 1990; 2: 758–765.CrossRefGoogle Scholar
  109. 109.
    Thomas PM, Cote GJ, Hallman DM, et al. Homozygosity mapping to chromosome llp, of the gene for familial hyperinsulinemic hypoglycemia of infancy. Am J Hum Genet 1995; 56: 416–421.PubMedGoogle Scholar
  110. 110.
    Glaser B, Chiu KC, Anker R, et al. Familial hyperinsulinemism maps to chromosome 11p14–15.1, 30cM centromeric to the insulin gene. Nat Genet 1994; 7: 185–188.PubMedCrossRefGoogle Scholar
  111. 111.
    Epstein MF, Nicholls E, Stubblefield PG. Neonatal hypoglycemia after beta-sympathomimetic tocolytic therapy. J Pediatr 1979; 94: 449–453.PubMedCrossRefGoogle Scholar
  112. 112.
    Procianoy RS, Pinheiro CEA. Neonatal hyperinsulinism after short term maternal beta sympathomimetic therapy. J Pediatr 1982; 101: 612–614.PubMedCrossRefGoogle Scholar
  113. 113.
    Leake RD, Hobel CJ, Okada DM, et al. Neonatal metabolic effects of oral ritodrine hypochloride administration. Pediatr Pharmacol 1983; 3: 101–106.Google Scholar
  114. 114.
    Tenenbaum D, Cowett RM. The mechanisms of beta sympathomimetic action on neonatal glucose homeostasis in the lamb. J Pediatr 1985; 107: 588–592.PubMedCrossRefGoogle Scholar
  115. 115.
    Nagel JW, Sims JS, Aplin CE, et al. Refractory hypoglycemia associated with a malpositioned umbilical artery catheter. Pediatrics 1979; 64: 315–317.PubMedGoogle Scholar
  116. 116.
    Malik M, Wilson DP. Umbilical artery catheterization. A potential cause of refractory hypoglycemia. Clin Pediatr 1987: 26: 181–182.CrossRefGoogle Scholar
  117. 117.
    Puri AR, Alkalay AL, Pomerance JJ, et al. Neonatal hypoglycemia associated with umbilical artery catheter positioned at eighth to ninth thoracic vertebrae. Am J Perinatol 1987; 4: 195–197.PubMedCrossRefGoogle Scholar
  118. 118.
    Carey BE, Zeilinger TC. Hypoglycemia due to high positioning of umbilical artery catheters. J Perinatol 1989; 9: 407–410.PubMedGoogle Scholar
  119. 119.
    Cowett RM, Tenenbaum D, Fatoba O, et al. The effects of glucose infusion above the celiac axis in the newborn lamb. Biol Neonate 1985; 47: 179–185.PubMedCrossRefGoogle Scholar
  120. 120.
    Jacob J, Davis RF. Differences in serum glucose determinations in infants with umbilical artery catheters. J Perinatol 1988; 8: 40–42.PubMedGoogle Scholar
  121. 121.
    Singh SP, Snyder AK, Singh SF. Effects of ethanol ingestion on maternal and fetal glucose homeostasis. J Lab Clin Med 1984; 104: 176–184.PubMedGoogle Scholar
  122. 122.
    Witek-Janusek L. Maternal ethanol ingestion: effect on maternal and neonatal glucose balance. Am J Physiol 1986; 251: E178–184.PubMedGoogle Scholar
  123. 123.
    Singh SP, Snyder AK, Pullen GL. Fetal alcohol syndrome-glucose and liver metabolism in term rat fetus and neonate. Alcoholism 1986; 10: 54–58.PubMedGoogle Scholar
  124. 124.
    Zucker P, Simon G. Prolonged symptomatic neonatal hypoglycemia associated with maternal chlorpropamide therapy. Pediatrics 1968; 42: 824–825.PubMedGoogle Scholar
  125. 125.
    Senior B, Slone D, Shapiro S, et al. Benzothiadiazides and neonatal hypoglycemia. Lancet 1976; 2: 377.PubMedCrossRefGoogle Scholar
  126. 126.
    Stern C. Idiopathic hypoglycemia. Proc R Soc Med 1973; 66: 345–346.PubMedGoogle Scholar
  127. 127.
    Brown RE, Young RB. A possible role for the exocrine pancreas in the pathogenesis of neonatal leucine sensitive hypoglycemia. Am J Dig Dis 1970; 15: 65–72.PubMedCrossRefGoogle Scholar
  128. 128.
    Schutgens RBH, Heymans H, Ketel A, et al. Lethal hypoglycemia in a child with a deficiency of 3-hydroxy-3methyl glutaryl coenzyme A lyase. J Pediatr 1979; 94: 89–91.PubMedCrossRefGoogle Scholar
  129. 129.
    Pickering D. Neonatal hypoglycemia due to salicylate poisoning. Proc R Soc Med 1968; 61: 1256.PubMedGoogle Scholar
  130. 130.
    Gemelli M, DeLuca R, Barberio G. Hypoglycemia and congenital adrenal hyperplasia. Acta Pediatr Scand 1979; 68: 285–286.CrossRefGoogle Scholar
  131. 131.
    Souto M, Piezzi RS, Bianchi R. Effect of insulin on neonatal and adult adrenal medulla in the rat. Acta Anat (Base) 1985; 122: 216–219.CrossRefGoogle Scholar
  132. 132.
    Artavia-Loria E, Chaussain JL, Bougneres PF, et al. Frequency of hypoglycemia in children with adrenal insufficiency. Acta Endocrinol Suppl (Copenh) 1986; 279: 275–278.Google Scholar
  133. 133.
    Lilien LD, Srinivasan G, Yeh TF, et al. Decreased plasma glucose following indomethacin therapy in premature infants with patent ductus arteriosus. Pediatr Pharmacol 1985; 5: 73–77.Google Scholar
  134. 134.
    Sperling MA. Hypoglycemia in the newborn infant, and child. In: Lifshitz F, ed. Pediatric endocrinology, a clinical guide. 2nd ed. New York: Marcel Dekker, 1990: 803–838.Google Scholar
  135. 135.
    Lilien LD, Pildes RS, Srinivasan G, et al. Treatment of neonatal hypoglycemia with minibolus and intravenous glucose infusion. J Pediatr 1980; 97: 295–298.PubMedCrossRefGoogle Scholar
  136. 136.
    Cowett RM, Susa JB, Schwartz R, et al. Concentration of parenteral glucose solution. Pediatrics 1977; 59: 791.Google Scholar
  137. 137.
    Sann L, Mousson B, Rousson M, et al. Prevention of neonatal hypoglycemia by oral lipid supplementation in low birth weight infants. Eur J Pediatr 1988; 147: 158–161.PubMedCrossRefGoogle Scholar
  138. 138.
    McCann ML, Likly B. The role of epinephrine prophylactic therapy in infants of diabetic mothers. Proc Soc Pediatr Res 1967; 3: 5.Google Scholar
  139. 139.
    Victorin LH, Thorell JI. Plasma insulin and blood glucose during long-term treatment with diazoxide for infant hypoglycemia. Case report. Acta Paediatr Scand 1974; 63: 302–306.CrossRefGoogle Scholar
  140. 140.
    Altszular N, Hampshire J, Moraru E. On the mechanism of diazoxide-induced hyperglycemia. Diabetes 1977; 26: 931–935.CrossRefGoogle Scholar
  141. 141.
    Cowett RM, Tenenbaum D. Hepatic response to insulin in control of glucose homeostasis in the neonatal lamb. Metabolism 1987; 36: 1021–1026.PubMedCrossRefGoogle Scholar
  142. 142.
    LeDune MA. Intravenous glucose tolerance and plasma insulin studies in small for date infants. Arch Dis Child 1972; 47: 111–114.CrossRefGoogle Scholar
  143. 143.
    Fox HA, Krasna IN. Total intravenous nutrition by peripheral vein in neonatal surgical patients. Pediatrics 1973; 52: 14–20.PubMedGoogle Scholar
  144. 144.
    Gentz JCH, Cornblath M. Transient diabetes of the newborn. Adv Pediatr 1969; 16: 345–363.PubMedGoogle Scholar
  145. 145.
    Dweck HS, Brans YW, Sumners JE, et al. Glucose intolerance in infants of very low birth weight. Intravenous glucose tolerance tests in infants of birth weights 500–1380 grams. Biol Neonate 1976; 30: 261–267.CrossRefGoogle Scholar
  146. 146.
    Lilien LO, Rosenfield RL, Baccaro MM, et al. Hyperglycemia in stressed small premature neonates. J Pediatr 1979; 94: 454–459.PubMedCrossRefGoogle Scholar
  147. 147.
    Louik C, Mitchell AA, Epstein MF, et al. Risk factors for neonatal hyperglycemia associated with 10% dextrose infusion. Am J Dis Child 1985; 139: 783–786.PubMedGoogle Scholar
  148. 148.
    Wu S, Srinivasan G, Pildes RS, et al. Plasma glucose (G) values during the first month of life in infants <1000gm. Pediatr Res 1990;27:231A.Google Scholar
  149. 149.
    Srinivasan G, Jain R, Pildes RS, et al. Glucose homeostasis during anesthesia and surgery in infants. J Pediatr Surg 1986; 21: 718–721.PubMedCrossRefGoogle Scholar
  150. 150.
    Arand KJS. Neonatal hyperglycemia during surgery. J Pediatr 1987; 110: 999.Google Scholar
  151. 151.
    Anand KJS, Brown MJ, Bloom SR, et al. Studies on the hormonal regulation of fuel metabolism in the human newborn infant undergoing anaesthesia and surgery. Horm Res 1985; 22: 115–128.PubMedCrossRefGoogle Scholar
  152. 152.
    Anand KJS, Aynsley-Green A. Metabolic and endocrine effects of surgical ligation of patent ductus arteriosus in the human preterm neonate: Are there implications for further improvement of postoperative outcome? Mod Probl Pediatr 1985; 23: 143–157.Google Scholar
  153. 153.
    Anand KJS, Sippell WG, Aynsley-Green A. Randomised trial of fentanyl anaesthesia in preterm neonates undergoing surgery: effects on the stress response. Lancet 1987; 1: 243–248.PubMedCrossRefGoogle Scholar
  154. 154.
    Anand KJS. The stress response to surgical trauma: from physiological basis to therapeutic implications. Prog Food Nutr Sci 1986; 10: 67–132.PubMedGoogle Scholar
  155. 155.
    Mammel MC, Green TP, Johnson DE, et al. Controlled trial of dexamethasone therapy in infants with bronchopulmonary dysplasia. Lancet 1983; 1: 1356–1358.PubMedCrossRefGoogle Scholar
  156. 156.
    Avery GB, Fletcher AB, Kaplan M, et al. Controlled trial of dexamethasone in respirator-dependent infants with bronchopulmonary dysplasia. Pediatrics 1985; 75: 106–111.PubMedGoogle Scholar
  157. 157.
    Cummings JJ, Eugenio DB, Gross SJ. A controlled trial of dexamethasone in preterm infants at high risk for bronchopulmonary dysplasia. N Engl J Med 1989; 320: 1505–1510.PubMedCrossRefGoogle Scholar
  158. 158.
    Harkavy KL, Scanlon JW, Chowdhry PK, et al. Dexamethasone therapy for chronic lung disease in ventilator-and oxygen-dependent infants: a controlled trial. J Pediatr 1989; 115: 979–983.PubMedCrossRefGoogle Scholar
  159. 159.
    Ferrara TB, Coyser RJ, Haekstra RE. Side effects and long term follow up of corticosteroid therapy in very low birth weight infants with broncho-pulmonary dysplasia. J Perinatol 1990; 10: 137–142.PubMedGoogle Scholar
  160. 160.
    James T III, Blessa M, Boggs TR Jr, et al. Recurrent hyperglycemia associated with sepsis in a neonate. Am J Dis Child 1979; 133: 645–646.PubMedGoogle Scholar
  161. 161.
    Srinivasan G, Singh J, Gattamanchi G, et al. Plasma glucose changes in preterm infants during oral theophylline therapy. J Pediatr 1983; 103: 473–476.PubMedCrossRefGoogle Scholar
  162. 162.
    Leisto J, Raivio K, Krohn K. Neonatal hyperglycemia and chromosome deletion (46,xx,Dq-). J Pediatr 1976; 88: 989–990.CrossRefGoogle Scholar
  163. 163.
    Yunis KA, Oh W, Kalhan SC, Cowett RM. Glucose kinetics following administration of an intravenous fat emulsion to low birth weight neonates. Am J Physiol 1992; 263: E844–849.PubMedGoogle Scholar
  164. 164.
    Anderson TL, Muttart CR, Bieher MA. A controlled trial of glucose versus glucose and amino acids in premature infants. J Pediatr 1978; 94: 949–951.Google Scholar
  165. 165.
    LeDune MA. Insulin studies in temporary neonatal hyperglycemia. Arch Dis Child 1971; 16: 392–394.CrossRefGoogle Scholar
  166. 166.
    Sodoyez-Goffant F, Sodoyez JC. Transient diabetes mellitus in a neonate. J Pediatr 1977; 91: 395–399.CrossRefGoogle Scholar
  167. 167.
    Gruppuso PA, Gorden P, Kahn CR, et al. Familial hyperproinsulinemia due to a proposed defect in conversion of proinsulin to insulin. N Engl J Med. 1984; 331: 629–635.CrossRefGoogle Scholar
  168. 168.
    Pollak A, Cowett RM, Schwartz R, et al. Glucose disposal in low birth weight infants during steady state hyperglycemia: effects of exogenous insulin administration. Pediatrics 1978; 61: 546–549.PubMedGoogle Scholar
  169. 169.
    Ostertag SG, Jovanovic L, Lewis B, Auld PAM. Insulin pump therapy in the very low birth weight infant. Pediatrics 1986; 78: 625–630.PubMedGoogle Scholar
  170. 170.
    Vaucher YE, Walson PD, Morrow G III. Continuous insulin infusion in hyperglycemic very low birth weight infants. J Pediatr Gastroenterol Nutr 1982; 2: 211–217.CrossRefGoogle Scholar
  171. 171.
    Goldman SL, Hirata T. Attenuated responses to insulin in very low birth weight infants. Pediatr Res 1980; 14: 50–53.PubMedGoogle Scholar
  172. 172.
    Heron P, Boucher D. Insulin infusion in infants of birthweight less than 1250 g and with glucose tolerance. Aust Paediatr J 1988; 24: 362–365.PubMedGoogle Scholar
  173. 173.
    Binder ND, Raschzo PK, Benda GI, et al. Insulin infusion with parenteral nutrition in extremely low birth weight infants with hyperglycemia. J Pediatr 1989; 114: 273–280.PubMedCrossRefGoogle Scholar
  174. 174.
    Collins JW, Hoppe M, Brown K, et al. A controlled trial of insulin infusion and parenteral nutrition in extremely low birth weight infants with glucose intolerance. J Pediatr 1991; 118: 921–927.PubMedCrossRefGoogle Scholar
  175. 175.
    Arant BS Jr, Gooch WM III. Effects of acute hyperglycemia on brains of neonatal puppies. Pediatr Res 1979; 13: 488A.Google Scholar
  176. 176.
    Ekblad H, Kero P, Takala J. Stable glucose balance in premature infants with fluid restriction and early enteral feeding. Acta Paediatr Scand 1987; 76: 438–443.PubMedCrossRefGoogle Scholar
  177. 177.
    Oliven A, King KC, Kalhan SC. Gastrointestinal enhanced insulin release in response to glucose in newborn infants. J Pediatr Gastroenterol Nutr 1986; 5: 220–225.PubMedGoogle Scholar
  178. 178.
    Ktorza A, Bihoreau MT, Nurjhan N, et al. Insulin and glucagon during the perinatal period secretion and metabolic effects on the liver. Biol Neonate 1985; 48: 204–220.PubMedCrossRefGoogle Scholar
  179. 179.
    King RA, Smith RM, Dahlenberg GW. Long term postnatal development of insulin secretion in early premature neonates. Early Human Dev 1986; 13: 285–294.CrossRefGoogle Scholar
  180. 180.
    Ghiglione M, Pascual JM, Rovira A, et al. Plasma glucagon-immunoreactive components in early life in dogs. Horm Metal Res 1985; 17: 387–390.CrossRefGoogle Scholar
  181. 181.
    Grasso S, Fallucca F, Massone D. Inhibition of glucagon secretion in the human newborn by glucose infusion. Diabetes 1983; 32: 498–492.CrossRefGoogle Scholar
  182. 182.
    Mehta A, Wootton R, Cheng KN, et al. Effect of diazoxide or glucagon on hepatic glucose production rate during extreme neonatal hypoglycemia. Arch Dis Child 1987; 62: 924–930.PubMedCrossRefGoogle Scholar
  183. 183.
    Mayor F, Cuezva JM. Hormonal and metabolic changes in the perinatal period. Biol Neonate 1985; 48: 185–196.PubMedCrossRefGoogle Scholar
  184. 184.
    Padbury JF, Polk DH, Newnham JP, et al. Neonatal adaptation greater sympathoadrenal response in preterm than full term fetal sheep at birth. Am J Physiol 1985; 248: E443–449.PubMedGoogle Scholar
  185. 185.
    Hagrevik K, Faxelius G, Irestedt L, et al. Catecholamine surge and metabolic adaptation in the newborn after vaginal delivery and cesarean section. Acta Paediatr Scand 1984; 73: 602–609.CrossRefGoogle Scholar
  186. 186.
    Gripois D, Valens M, Diarra A. Adrenal medullary responses to insulin induced hypoglycemia in the young rat. Influence of thyroid hormones. J Auton Nery Syst 1986; 15: 165–178.CrossRefGoogle Scholar
  187. 187.
    Adam PAJ, King KC, Schwartz R. Model for the investigation of intractable hypoglycemia: insulin-glucose interrelationship during steady state infusions. Pediatrics 1968; 41: 91–105.PubMedGoogle Scholar
  188. 188.
    Varma S, Nickerson H, Cowan JS, et al. Homeostasis response to glucose loading in newborn and young dogs. Metabolism 1973; 22: 1367–1375.CrossRefGoogle Scholar
  189. 189.
    Kornhauser D, Adam PAJ, Schwartz R. Glucose production and utilization in the newborn puppy. Pediatr Res 1974; 4: 120–128.CrossRefGoogle Scholar
  190. 190.
    Cowett RM, Susa JB, Oh W, et al. Endogenous glucose production during constant glucose infusion in the newborn lamb. Pediatr Res 1978; 12: 853–857.PubMedCrossRefGoogle Scholar
  191. 191.
    Clark MG, Filsell OH, Jarrett IG. Gluconeogenesis in isolated intact lamb liver cells. Biochem J 1976; 156: 671.PubMedGoogle Scholar
  192. 192.
    Curnow RT, Rayfield EJ, George DT, et al. Control of hepatic glycogen metabolism in the rhesus monkey: effect of glucose, insulin, and glucagon administration. Am J Physiol 1975; 228: E80–89.Google Scholar
  193. 193.
    Owen OE, Patel MS, Block BSB, et al. Gluconeogenesis in normal, cirrhotic and diabetic humans. In: Hanson RW, Mehlman MA, eds. Gluconeogenesis: its regulation in mammalian species. New York: Wiley Interscience, 1965: 533.Google Scholar
  194. 194.
    Susa JB, Cowett RM, Oh W, et al. Suppression of gluconeogenesis and endogenous glucose production by exogenous insulin administration in the newborn lamb. Pediatr Res 1979; 13: 594–599.PubMedCrossRefGoogle Scholar
  195. 195.
    Cowett RM, Susa JB, Warburton D, et al. Endogenous post-hepatic secretion and metabolic clearance rates in the neonatal lamb. Pediatr Res 1980; 14: 1391–1394.PubMedCrossRefGoogle Scholar
  196. 196.
    Cowett RM, Oh W, Schwartz R. Persistent glucose production during glucose infusion in the human neonate. J Clin Invest 1983; 71: 467–475.PubMedCrossRefGoogle Scholar
  197. 197.
    Cowett RM, Anderson GE, Maguire CA, et al. Ontogeny of glucose homeostasis in low birth weight infants. J Pediatr 1989; 115: 998–1000.PubMedCrossRefGoogle Scholar
  198. 198.
    Cowett RM. Decreased response to catecholamines in the newborn: effect on glucose kinetics in the lamb. Metabolism 1988; 37: 736–740.PubMedCrossRefGoogle Scholar
  199. 199.
    Cowett RM. Alpha adrenergic agonists stimulate neonatal glucose production less than beta adrenergic agonist in the lamb. Metabolism 1988; 37: 83–86.Google Scholar
  200. 200.
    Hetenyi C, Kovacevic N, Hall SEH, et al. Plasma glucagon in pups, decreased by fasting, unaffected by somatostatin or hyperglycemia. Am J Physiol 1976; 231: 1377–1382.PubMedGoogle Scholar
  201. 201.
    Cowett RM, Rapoza RE. Influence of glucagon as a contra insulin hormone in neonatal hyperinsulinemic hypoglycemia. Pediatr Res 1996; 39: 87A.Google Scholar
  202. 202.
    Cowett RM, Rapoza RE. Glucose does not autoregulate neonatal glucose homeostasis. Pediatr Res 1996; 39: 307A.Google Scholar
  203. 203.
    Cowett RM, Rapoza RE, Jawad G, et al. Sympathomimetics as contra-insulin hormones in neonatal hyperinsulinemic hypoglycemia. Pediatr Res 1997; 41: 230A.Google Scholar
  204. 204.
    Wolfe R, Allsop JR, Burke JF. Glucose metabolism in man: responses to intravenous glucose infusion. Metab Clin Exp 1979; 28: 210–220.PubMedCrossRefGoogle Scholar
  205. 205.
    Kalhan SC, Oliver A, King KC, et al. Role of glucose in the regulation of endogenous glucose production in the human newborn. Pediatr Res 1986; 20: 49–52.PubMedCrossRefGoogle Scholar
  206. 206.
    Hulman SE, Kliegman RM. Assessment of insulin resistance in newborn beagles with the euglycemic hyperinsulinemic clamp. Pediatr Res 1989; 25: 219–223.PubMedCrossRefGoogle Scholar
  207. 207.
    Kliegman R, Trindade C, Hugan M, et al. Effects of euglycemic hyperinsulinemia on neonatal canine hepatic and muscle metabolism. Pediatr Res 1989; 25: 124–129.PubMedCrossRefGoogle Scholar
  208. 208.
    DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979; 237: E214–223.PubMedGoogle Scholar
  209. 209.
    Kahn CR. Insulin resistance, insulin insensitivity and insulin unresponsiveness: a necessary distinction. Metab Clin Exp 1978; 27: 1893–1902.PubMedCrossRefGoogle Scholar
  210. 210.
    Farrag HM, Nawrath LM, Healey JE, et al. Persistent glucose production and greater peripheral sensitivity to insulin in the neonate vs. the adult. Am J Physiol 1997; 272: E86–93.PubMedGoogle Scholar
  211. 211.
    Kono T, Barham FW. The relationship between the insulin-binding capacity of fat cells and the cellular response to insulin: studies with intact and trypsin-treated fat cells. J Biol Chem 1971; 246: 6210–6216.PubMedGoogle Scholar
  212. 212.
    Rizza RA, Mandarino LJ, Gerich JE. Dose response characteristics for effects of insulin on production and utilization of glucose in man. Am J Physiol 1981; 240; E630–629.PubMedGoogle Scholar
  213. 213.
    Thorsson AV, Hintz RL. Insulin receptors in the newborn: increase in receptor affinity and number. N Engl J Med 1977; 297: 908–912.PubMedCrossRefGoogle Scholar
  214. 214.
    Rebrin K, Steil GM, Getty L, et al. Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes 1995; 44: 1038–1045.PubMedCrossRefGoogle Scholar
  215. 215.
    Hertz DE, Kam CA, Liu YM, et al. Intravenous glucose suppresses glucose production but not proteolysis in extremely premature newborns. J Clin Invest 1993; 92: 1752–1758.PubMedCrossRefGoogle Scholar
  216. 216.
    Denne SC, Kam CA, Wang J, et al. Effect of intravenous glucose and lipid on proteolysis and glucose production in normal newborns. Am J Physiol 1995; 269: E361–E367.PubMedGoogle Scholar
  217. 217.
    Bergman RN, Hope ID, Yang YJ, et al. Assessment of insulin sensitivity in vivo; a critical review. Diabetes Metab Rev 1989; 5: 411–429.PubMedCrossRefGoogle Scholar
  218. 218.
    Menon RK, Sperling MA. Carbohydrate metabolism. Semin Perinatol 1988; 12: 157–162.PubMedGoogle Scholar
  219. 219.
    Girard J. Gluconeogenesis in late fetal and early neonatal life. Biol Neonate 1986; 50: 237–258.PubMedCrossRefGoogle Scholar
  220. 220.
    Bougnères PF, Karl IE, Hillman LS, et al. Lipid transport in the human newborn. Palmitate and glycerol turnover and the contribution of glycerol to neonatal hepatic glucose output. J Clin Invest. 1982; 70: 262–270.PubMedCrossRefGoogle Scholar
  221. 221.
    Frazer TE, Karl IE, Hillman LS, et al. Direct measurement of gluconeogenesis from (2,3–13C)alanine in the human neonate. Am J Physiol 1981; 240: E615–621.PubMedGoogle Scholar
  222. 222.
    Gilfillan CA, Tserng KY, Kalhan SC. Alanine production by the human fetus at term gestation. Biol Neonate 1985; 47: 141–147.PubMedCrossRefGoogle Scholar
  223. 223.
    Gleason CA, Roman C, Rudolph AM. Hepatic oxygen consumption, lactate uptake and glucose production in neonatal lambs. Pediatr Res 1985; 19: 1235–1239.PubMedCrossRefGoogle Scholar
  224. 224.
    Bier DM, Arnold KF, Sherman WR, et al. In vivo measurement of glucose and alanine metabolism with stable isotopic tracers. Diabetes 1977; 26: 1005–1015.PubMedCrossRefGoogle Scholar
  225. 225.
    Bier DM, Leake RD, Haymond MW, et al. Measurement of true glucose production rules in infancy and childhood with 6,6 dideutero glucose. Diabetes 1977; 26: 1016–1023.PubMedCrossRefGoogle Scholar
  226. 226.
    Kalhan SC, Savin SM, Adam PAJ. Measurement of glucose turnover in the human newborn with glucose I-13C. J Endocrinol Metab 1976; 43: 704–707.CrossRefGoogle Scholar
  227. 227.
    Kalhan SC, Savin SM, Adam PAJ. Attenuated glucose production rate in newborn infants of insulin dependent diabetic mothers. N Engl J Med 1977; 296: 375–376.PubMedCrossRefGoogle Scholar
  228. 228.
    Kalhan SC, Bier DM, Savin SM, et al. Estimation of glucose turnover and 13C recycling in the human newborn by simultaneous [1–13C]glucose and [6,6–2H2]glucose tracers. J Clin Endocrinol Metab 1980; 50: 456–460.PubMedCrossRefGoogle Scholar
  229. 229.
    Kerr DS, Stevens MCG, Robinson HM. Fasting metabolism in infants. I. Effect of severe undernutrition on energy and protein utilization. Metabolism 1978; 27: 411–435.PubMedCrossRefGoogle Scholar
  230. 230.
    Kerr DS, Stevens MCG, Picou DIM. Fasting metabolism in infants: II. The effect of severe undernutrition and infusion of alanine on glucose production estimated with 613C-glucose. Metabolism 1978; 27: 831–848.PubMedCrossRefGoogle Scholar
  231. 231.
    Cowett RM, Susa J, Gilleti B, et al. Glucose kinetics in infants of diabetic mothers. Am J Obstet Gynecol 1983; 146: 781–786.PubMedGoogle Scholar
  232. 232.
    King KC, Tserng KY, Kalhan SC. Regulation of glucose production in newborn infants of diabetic mothers. Pediatr Res 1982; 16: 608–612.PubMedCrossRefGoogle Scholar
  233. 233.
    Denne SC, Kalhan SC. Leucine metabolism in human newborns. Am J Physiol 1987; 253: E608–E615.PubMedGoogle Scholar
  234. 234.
    VanAerde JEE, Sauer PJJ, Pencharz PB, et al. The effect of energy intake and expenditure on the recovery of 13CO2 in the parenterally fed neonate during a 4 hour primed constant infusion of NAH13CO3. Pediatr Res 1985; 19: 806–810.CrossRefGoogle Scholar
  235. 235.
    Zarlengo KM, Battaglia FC, Fennessey P, et al. Relationship between glucose utilization rate and glucose concentration in preterm infants. Biol Neonate 1986; 49: 181–189.PubMedCrossRefGoogle Scholar
  236. 236.
    Denne SC, Kalhan SC. Glucose carbon recycling and oxidation in human newborns. Am J Physiol 1986; 251: E71–77.PubMedGoogle Scholar
  237. 237.
    Sauer PJJ, VanAerde JEE, Pencharz PB, et al. Glucose oxidation rates in newborn infants measured with indirect calorimetry and [U-13C]glucose. Clin Sci 1986; 70: 587–593.PubMedGoogle Scholar
  238. 238.
    Kalhan SC, Van Beek RHT, Sauer PJJ. Estimates of gluconeogenesis in the preterm infant. Pediatr Res 1997; 41: 233A.Google Scholar
  239. 239.
    Sunehag AL, Schanler RJ, Reeds PJ, et al. Gluconeogenesis in extremely premature infants receiving parenteral nutrition. Pediatr Res 1997; 41: 241AGoogle Scholar
  240. 240.
    Feng BC, Kliegman RM. Insulin resistance and neonatal canine gluconeogenesis: transcription of the fructose-1,6bisphosphatase gene. Pediatr Res 1994; 35: 202A.Google Scholar
  241. 241.
    Feng BC, Li JX, Kliegman RM. Effects of insulin, epinephrine, and glucose on regulation of transcription of the serine dehydratase gene in newborn dogs. Biochem Mol Med 1996; 57: 91–96.PubMedCrossRefGoogle Scholar
  242. 242.
    Feng BC, Li JX, Kliegman RM. Transcription of hepatic cytosolic phosphoenolpyruvate carboxykinase gene in newborn dogs. Biochem Mol Med 1996; 59: 13–19.PubMedCrossRefGoogle Scholar
  243. 243.
    Jahoor F, Peters EJ, Wolfe RR. The relationship between gluconeogenic substrate supply and glucose production in humans. Am J Physiol 1990; 258: E288–E296.PubMedGoogle Scholar
  244. 244.
    Bennish ML, Kalam AA, Rahman O, et al. Hypoglycemia during diarrhea in childhood: prevalance pathophysiology and outcome. N Engl J Med 1990; 322: 1357–1363.PubMedCrossRefGoogle Scholar
  245. 245.
    Haymond MW, Karl IE, Clarke WL, et al. Differences in circulating gluconeogenic substances during short term fasting in men, women and children. Metabolism 1982; 31: 33–42.PubMedCrossRefGoogle Scholar
  246. 246.
    Cowett RM, Wolfe RR. The potential for lactate gluconeogenesis is accelerated in the preterm neonate compared to the adult. J Dev Physiol 1991; 16: 341–347.PubMedGoogle Scholar
  247. 247.
    Lafeber HN, Sulkers EJ, Chapman T, et al. Glucose production and oxidation in preterm infants during total parenteral nutrition. Pediatr Res 1990; 28: 153–157.PubMedGoogle Scholar
  248. 248.
    Farrag HM, Nawrath LM, Dorcus EJ, et al. Ontogeny of glucose production and glucose oxidation in the extremely low birth weight [25–27 week] neonate. Submitted for publication.Google Scholar
  249. 249.
    Jacot E, Defronzo A, Jequier E, et al. The effect of hyperglycemia, hyperinsulinemia and route of glucose administration on glucose oxidation and glucose storage. Metabolism 1982; 31: 922–930.PubMedCrossRefGoogle Scholar
  250. 250.
    Wolfe RR, O’Donell TF, Stone MD, et al. Investigation of factors determining the optimal glucose infusion rate in total parenteral nutrition. Metabolism 1980; 29: 89 2900.Google Scholar
  251. 251.
    Savich RD, Finley SL, Ogata ES. Intravenous lipid and amino acids briskly increase plasma glucose concentra-tions in small premature infants. Am J Perinatol 1988; 5: 201–205.PubMedCrossRefGoogle Scholar
  252. 252.
    van Goudoever JB, Sulkers EJ, Chapman TE, et al. Glucose kinetics and glucoregulatory hormone levels in ventilated preterm infants on the first day of life. Pediatr Res 1993; 33: 583–589.PubMedCrossRefGoogle Scholar
  253. 253.
    Gleason VA, Hamm C, Jones MD Jr. Cerebral blood flow oxygenation and carbohydrate metabolism in immature fetal sheep in utero. Am J Physiol 1989; 256: R1264–1268.PubMedGoogle Scholar
  254. 254.
    Altman DI, Perlman JM, Volpe JJ, et al. Cerebral oxygen metabolism in newborns. Pediatrics 1993; 92: 99–104.PubMedGoogle Scholar
  255. 255.
    Vannucci RC: Perinatal brain metabolism. In: Polin RA, WW Fox, eds. Fetal and neonatal physiology. Philadelphia: WB Saunders, 1992: 1510–1519.Google Scholar
  256. 256.
    Best JD, Taborsky GJ Jr, Halter JB, et al. Glucose disposal is not proportional to plasma glucose in man. Diabetes 1981; 30: 847–850.PubMedCrossRefGoogle Scholar
  257. 257.
    Volpe JJ. Hypoglycemia and brain injury. In: Neurology of the newborn. 2nd ed. Philadelphia: WB Saunders, 1987: 364–385.Google Scholar
  258. 258.
    Huang MM, Kliegman RM, Chau K. Partitioning and extraction of glucose regulates cerebral glucose utilization in newborn dogs. Biol Neonate 1989; 55: 290–297.PubMedCrossRefGoogle Scholar
  259. 259.
    Pryds O, Christensen NJ, Friis-Hansen B. Increased cerebral blood flow and plasma epinephrine in hypo-glycemic preterm neonates. Pediatrics 1990; 85: 172–176.PubMedGoogle Scholar
  260. 260.
    Anwar DU, Vannucci RC. Autoradiographic determination of regional cerebral blood flow during hypoglycemia on newborn dogs. Pediatr Res 1988; 24: 41–45.PubMedCrossRefGoogle Scholar
  261. 261.
    Pryds O, Greisen G, Friis-Hansen B. Compensatory increase of CBF in preterm infants during hypoglycemia. Acta Paediatr Scand 1988; 77: 632–637.PubMedCrossRefGoogle Scholar
  262. 262.
    Shen E-Y. Neurosonographic findings in high risk neonates with hypoglycemia. Acta Paediatr Sin 1996; 37: 248252.Google Scholar
  263. 263.
    Cowett RM, Howard GM, Johnson J, et al. Brain auditory evoked response (BAER) in relation to neonatal glucose metabolism. Biol Neonate 1997; 71: 31–36.PubMedCrossRefGoogle Scholar
  264. 264.
    Pildes RS, Wu SY, Henek T, et al. Early hyperglycemia: predictor of neonatal course and developmental outcome. Pediatr Res 1990; 27: 220A.Google Scholar
  265. 265.
    Vannucci RC, Brucklacher RM, Vannucci SJ. The effect of hyperglycemia on cerebral metabolism during hypoxiaischemia in the immature rat. J Cereb Blood Flow Metab 1996; 16: 1026–1033.PubMedCrossRefGoogle Scholar
  266. 266.
    DiGiacomo JE, Hay WW Jr. Abnormal glucose homeostasis. In: Sinclair JC, Bracken MB, eds. Effective care of the newborn infant. Oxford: Oxford University Press, 1992: 590–601.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Richard M. Cowett
  • Hussien M. Farrag

There are no affiliations available

Personalised recommendations