Skip to main content

Developmental Endocrinology in the Fetal-Placental Unit

  • Chapter
Principles of Perinatal—Neonatal Metabolism

Abstract

The placenta is a tissue of fetal origin embedded in the maternal uterine wall that permits exchange of vital nutrients and other elements essential for fetal growth, development, and survival. In addition, the placenta is a tissue capable of steroid and polypeptide synthesis. Hormonal products and interconversions resulting from these synthetic pathways appear to be critically important for ordered fetal growth and development. In some instances, notably estradiol (E2) and estriol (E3) synthesis, the placenta converts steroid precursors synthesized in the fetal adrenal. Thus, in this instance, the placenta completes a task initiated in the fetal adrenal so that the fetus and placenta act as a unit, the fetoplacental unit. This chapter discusses endocrine aspects of the fetalplacental unit during gestation and their relevance to the physiology of normal intrauterine development as well as selected examples of pathologic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cummings SW, Hatley W, Simpson ER, Ohashi M. The binding of high and low density lipoproteins to human placental membrane fractions. J Clin Endocrinol Metab 1982; 54: 903–908.

    Article  PubMed  CAS  Google Scholar 

  2. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homoestasis. Science 1986; 232: 34–37.

    Article  PubMed  CAS  Google Scholar 

  3. Little B, Shaw A. The conversion of progesterone to 17α-hydroxy-progesterone by human placenta in vitro. Acta Endocrinol 1961; 36: 455–461.

    PubMed  CAS  Google Scholar 

  4. Ryan KJ. Aromatization of steroids. J Biol Chem 1959; 234: 268–272.

    PubMed  CAS  Google Scholar 

  5. Siiteri PK, MacDonald PC. The utilization of circulating dehydroepiandrosterone sulfate for estrogen synthesis during human pregnancy. Steroids 1963; 2: 713–730.

    Article  CAS  Google Scholar 

  6. Siiteri PK, MacDonald PC. Placental estrogen biosynthesis during human pregnancy. J Clin Endocrinol Metab 1966; 26: 751–761.

    Article  PubMed  CAS  Google Scholar 

  7. Carr BR, Parker CR, Milewich L, et al. The role of low density, high density, and very low density lipoprotein in steroidogenesis by the human fetal adrenal gland. Endocrinology 1980; 106: 1854–1860.

    Article  PubMed  CAS  Google Scholar 

  8. Gurpide E, Schwers J, Welch MT, et al. Fetal and maternal metabolism of estradiol during pregnancy. J Clin Endocrinol Metab 1966; 26: 1355–1365.

    Article  PubMed  CAS  Google Scholar 

  9. Lin D, Gitelman SE, Saenger P, Miller WL. Normal genes for the cholesterol side chain cleavage enzyme, P450scc, in congenital lipoid adrenal hyperplasia. J Clin Invest 1991; 88: 1955–1962.

    Article  PubMed  CAS  Google Scholar 

  10. Matteson KJ, Chung BC, Urdea MS, Miller WL. Study of cholesterol side-chain cleavage (20, 22 desmolase) deficiency causing congenital lipoid adrenal hyperplasia using bovine-sequence P450scc oligodeoxyribonucleotide probes. Endocrinology 1986; 118: 1296–1305.

    Article  PubMed  CAS  Google Scholar 

  11. Sakai Y, Yanase T, Okabe Y, et al. No mutation in cytochrome P450 side chain cleavage in a patient with congenital lipoid adrenal hyperplasia. J Clin Endocrinol Metab 1994; 79: 1198–1201.

    Article  PubMed  CAS  Google Scholar 

  12. Fukami M, Sato S, Ogata T, Matsuo N. Lack of mutations in P450scc gene (CYP11A) in six Japanese patients with congenital lipoid adrenal hyperplasia. Clin Pediatr Endocrinol 1995; 4: 39–46.

    Article  Google Scholar 

  13. Epstein LF, Orme-Johnson NR. Regulation of steroid hormone biosynthesis: identification of precursors of a phosphoprotein targeted to the mitochondrion in stimulated rat adrenal cortex cells. J Biol Chem 1991; 266: 19739–19745.

    PubMed  CAS  Google Scholar 

  14. Stocco DM, Sodeman TC. The 30-kDa mitochondrial proteins induced by hormone stimulation in MA-10 mouse Leydig tumor cells are processed from larger precursors. J Biol Chem 1991; 266: 19731–19738.

    PubMed  CAS  Google Scholar 

  15. Clark BJ, Wells J, King SR, Stocco DM. The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells: characterization of the steroidogenic acute regulatory protein (StAR). J Biol Chem 1994; 269: 28314–28322.

    PubMed  CAS  Google Scholar 

  16. Bose HS, Sugawara T, Jerome III FS, Miller WL. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med 1996; 335: 1870–1878.

    Article  PubMed  CAS  Google Scholar 

  17. Lin D, Sugawara T, Strauss III JF, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 1995; 267: 1828–1831.

    Article  PubMed  CAS  Google Scholar 

  18. Tee MK, Lin D, Sugawara T, et al. T-A transversion 11 bp from a splice acceptor site in the gene for steroidogenic acute regulatory protein causes congenital lipoid adrenal hyperplasia. Hum Mol Genet 1995; 4: 2299–2305.

    Article  PubMed  CAS  Google Scholar 

  19. Stocco DM, Clark BJ. Regulation of the acute production of steroids in steroidogenic cells. Endocr Rev 1996; 17: 221–244.

    PubMed  CAS  Google Scholar 

  20. Simpson ER, Burkhart MF. AcylCoA: cholesterol acyltransferase activity in human placental microsomes: inhibition by progesterone. Arch Biochim Biophys 1980; 200: 79–85.

    Article  CAS  Google Scholar 

  21. MacDonald PC, Siiteri PK. Origin of estrogen in women pregnant with anencephalic fetus. J Clin Invest 1965; 44: 465–474.

    Article  PubMed  CAS  Google Scholar 

  22. Got R, Bourrillon R. Nouvelle methode de purification de la gonadotropine choriale humaine. Biochim Biophys Acta 1960; 42: 241–247.

    Article  Google Scholar 

  23. Bellisario R, Carlsen RB, Bahl OP. Human chorionic gonadotropin; linear amino acid sequence of the alpha subunit. J Biol Chem 1973; 248: 6796–6807.

    PubMed  CAS  Google Scholar 

  24. Khodr GS, Siler-Khodr TM. The effect of luteinizing hormone-releasing factor on human chorionic gonadotropin secretion. Fertil Steril 1978; 30: 301–304.

    PubMed  CAS  Google Scholar 

  25. Nishino E, Matsuzaki N, Masuhiro K, et al. Trophoblast derived interleukin 6 (IL-6) regulates human chorionic gonadotropin release through IL-6 receptor on human trophoblasts. J Clin Endocrinol Metab 1990; 71: 436.

    Article  PubMed  CAS  Google Scholar 

  26. Li Y, Matsuzaki N, Masuhiro K, et al. Trophoblast derived tumor necrosis factor-alpha induces release of human chorionic gonadotropin using IL-1 and IL-6 receptor dependent system in the normal human trophoblast. J Clin Endocrinol Metab 1992; 74: 184–191.

    Article  PubMed  CAS  Google Scholar 

  27. Mersol-Barry MS, Miller KF, Choi CM, et al Inhibin suppresses human chorionic gonadotropin secretion in term, but not first trimester placenta. J Clin Endocrinol Metab 1968; 71: 1294–1298

    Google Scholar 

  28. Tulsky AJ, Koff AK. Some observations on the role of the corpus luteum in early human pregnancy. Fertil Steril 1957; 8: 118–130.

    PubMed  CAS  Google Scholar 

  29. Serron-Ferre M, Lawrence CC, Jaffe RB. Role of hCG in the regulation of the fetal zone of the human fetal adrenal gland. J Clin Endocrinol Metab 1978; 46: 834–837.

    Article  Google Scholar 

  30. Talamantes F, Ogren L, Markoff E, et al. Phylogenetic distribution, regulation of secretion, and prolactin-like effects of placental lactogens. Fed Proc 1980; 39: 2582–2587.

    PubMed  CAS  Google Scholar 

  31. Bewley TA, Li CH. Structural similarities between human pituitary growth hormone, human chorionic somato-mammotropin and ovine pituitary growth hormone and lactogenic hormones. In: Josmovich JB, Reynolds M, Cobo E, eds. Lactogenic hormones, fetal nutrition and lactation. New York: Wiley, 1975: 19–32.

    Google Scholar 

  32. Handwerker S, Sherwood LM. Comparison of the structure and lactogenic activity of human placental lactogen and human growth hormone. In: Josmovich JB, Reynolds M, Cobo E, eds. Lactogenic hormones, fetal nutrition and lactation. New York: Wiley, 1975: 33–47.

    Google Scholar 

  33. Petraglia F, Volpe AO, Genazzani AR, et al. Neuroendocrinology of the human placenta. Front Neuroendocrinol 1990; 11: 6–37.

    Google Scholar 

  34. Khodr GS, Siler-Khodr TM. Placental luteinizing hormone- releasing factor and its synthesis. Science 1980; 207: 315–317.

    Article  PubMed  CAS  Google Scholar 

  35. Shibasaki T, Odagiri E, Shizume K, Ling N. Corticotropin releasing factor-like activity in human placental extracts. J Clin Endocrinol Metab 1982; 55: 384–386.

    Article  PubMed  CAS  Google Scholar 

  36. Campbell EA, Linton EA, Wolfe CD, et al. Plasma corticotropin-releasing hormone concentrations during pregnancy and parturition. J Clin Endocrinol Metab 1987; 63: 1054–1059.

    Article  Google Scholar 

  37. Linton EA, Behan DP, Saphier. PN, Loury PJ. Corticotropin releasing hormone (CRH)-binding protein. Reduction in the adrenocorticotropin releasing activity of placental but not hypothalamic CRH. J Clin Endocrinol Metab 1990; 70: 1574–1580.

    Article  PubMed  CAS  Google Scholar 

  38. Jones SA, Brooks AN, Challis JRG. Steroids modulate corticotropin-releasing hormone production in human fetal membranes and placenta. J Clin Endocrinol Metab 1989; 68: 825–830.

    Article  PubMed  CAS  Google Scholar 

  39. Milic AB, Adamsons K. The relationship between anencephaly and prolonged pregnancy. Br J Obstet Gynaecol 1987; 76: 102–111.

    Google Scholar 

  40. Bartelmez GW, Dekaban AS. The early development of the human brain. Contrib Embryol Carnegie Inst 1962; 37: 13–32.

    Google Scholar 

  41. Schwanzel-Fukuda M, Pfaff DW. Origin of luteinizing hormone-releasing hormone neurons. Nature (Lond) 1989; 338: 161–164.

    Article  Google Scholar 

  42. Wray S, Grant P, Gainer H. Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode. Proc Natl Acad Sci USA 1989; 86: 8132–8136.

    Article  PubMed  CAS  Google Scholar 

  43. Wray S, Nieburgs A, Elkabes S. Spatiotemporal cell expression of luteinizing hormone-releasing hormone in the prenatal mouse: evidence for an embryonic origin in the olfactory placode. Dev Brain Res 1989; 46: 309–318.

    Article  CAS  Google Scholar 

  44. Prager D, Braunstein GD, Editorial: X-chromosome-linked. Kallmann’s syndrome: pathology at the molecular level. J Clin Endocrinol Metab 1993; 76: 824–826.

    Article  PubMed  CAS  Google Scholar 

  45. Franco B, Guioli S, Pragliola A, et al. A gene deleted in Kallmann syndrome shares homology with neural cell adhesion and axonal pathfinding molecules. Nature 1991; 353: 529–536.

    Article  PubMed  CAS  Google Scholar 

  46. O’Rahilly R. The timing and sequence of events in the development of the human endocrine system during the embryonic period proper. Anat Embryol 1983; 166: 439–451.

    Article  PubMed  Google Scholar 

  47. Ikeda H, Suzuki J, Sasano N, Nizuma H. The development and morphogenesis of the human pituitary gland. Anat Embryol 1988; 178: 327–336.

    Article  PubMed  CAS  Google Scholar 

  48. Schaufele F. Regulation of expression of the growth hormones and prolactin genes. In: Imura H, ed. The pituitary gland. New York: Raven Press, 1994: 91–113.

    Google Scholar 

  49. Simmons DM, Voss JW, Ingraham HA, et al. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev 1990; 4: 695–711.

    Article  PubMed  CAS  Google Scholar 

  50. Mangalam HJ, Albert VR, Ingraham HA, et al. A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally. Genes Dev 1989; 3: 946–958.

    Article  PubMed  CAS  Google Scholar 

  51. Ingraham HA, Flynn SE, Voss JW, et al. The POU-specific domain of Pit-1 is essential for sequence-specific, high- affinity DNA binding and DNA-dependent Pit-1-Pit-1 interactions. Cell 1990; 61: 1021–1033.

    Article  PubMed  CAS  Google Scholar 

  52. Theill LE, Castrillo JL, Wu D, et al. Dissection of functional domains of the pituitary transcription factor GHF-1. Nature 1989; 342: 945–948.

    Article  PubMed  CAS  Google Scholar 

  53. Li S, Crenshaw III EB, Rawson EJ, et al. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene Pit-1. Nature 1990; 347: 528–533.

    Article  PubMed  CAS  Google Scholar 

  54. Cohen LE, Wondisford FE, Radovick S. Role of Pit-1 in the gene expression of growth hormone, prolactin, and thyrotropin. In: Rosenfield RL, ed. Endocrinology and metabolism clinics of North America. Philadelphia: WB Saunders, 1996; 523–540.

    Google Scholar 

  55. Kaplan SL, Grumbach MM, Shepard TH. The ontogenesis of human fetal hormones. J Clin Invest 1972; 51: 3080–3093.

    Article  PubMed  CAS  Google Scholar 

  56. Albers N, Bettendorf M, Herrmann H, et al. Hormone ontogeny in the ovine fetus. XXVII. Pulsatile and copulsatile secretion of luteinizing hormone, follicle stimulating hormone, growth hormone, and prolactin in late gestation: A new method for the analysis of copulsatility. Endocrinology 1993; 132: 701–709.

    Article  PubMed  CAS  Google Scholar 

  57. Gluckman PD, Grumbach MM, Kaplan SL. The neuroendocrine regulation and function of growth hormone and prolactin in the mammalian fetus. Endocr Rev 1981; 2: 363–395.

    Article  PubMed  CAS  Google Scholar 

  58. Goodyer CG, Branchaud CL, Lefebvre Y. Effects of growth hormone (GH)-releasing factor and somatostatin on GH secretion from early to midgestation human fetal pituitaries. J Clin Endocrinol Metab 1993; 76: 1259–1964.

    Article  PubMed  CAS  Google Scholar 

  59. Pasteels JL, Sheridan R, Gaspar S, Franchimont P. Synthesis and release of gonadotropins and their subunits by long-term organ cultures of human fetal hypophyses. Mol Cell Endocrinol 1977; 9: 1–19.

    Article  PubMed  CAS  Google Scholar 

  60. Grumbach MM, Kaplan SL. Ontogenesis of growth hormone, insulin, prolactin and gonadotropin secretion in the human foetus. In: Cross KW, Nathanielsz P, eds. Foetal and neonatal physiology. Proceedings of Sir Joseph Barcroft Centenary Symposium. Cambridge: Cambridge University Press, 1973: 462–487.

    Google Scholar 

  61. Grumbach MM. Fetal pituitary hormones and the maturation of central nervous system regulation of anterior pituitary function. In: Gluck L, ed. Modern perinatal medicine. Chicago: Year Book Medical, 1974: 247–271.

    Google Scholar 

  62. Siler-Khodr TM, Khodr GS. Studies in human fetal endocrinology. I. Luteinizing hormone-releasing factor content of the hypothalamus. Am J Obstet Gynecol 1978; 130: 795–800.

    PubMed  Google Scholar 

  63. Rasmussen DD, Gambacciani M, Swartz WH, et al. Pulsatile GnRH release from the human mediobasal hypothalamus in vitro: opiate receptor mediated suppression. Neuroendocrinology 1989; 49: 150–156.

    Article  PubMed  CAS  Google Scholar 

  64. Moya F, Mena P, Hensser F, et al. Response of the maternal, fetal and neonatal pituitary thyroid axis to thyrotropin-releasing hormone. Pediatr Res 1986; 20: 982–986.

    Article  PubMed  CAS  Google Scholar 

  65. Harada A, Hershman JM, Reed AW, et al. Comparison of thyroid stimulators and thyroid hormone concentrations in the sera of pregnant women. J Clin Endocrinol Metab 1979; 48: 793–797.

    Article  PubMed  CAS  Google Scholar 

  66. Vulsma T, Gons MH, DeVijlder JJM. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N Engl J Med 1989; 321; 13–16.

    Article  PubMed  CAS  Google Scholar 

  67. Castaign H, Fournet JP, Leger FA, et al. Thyroid of the newborn and postnatal iodine overload. Arch Fr Pediatr 1979; 36: 356–368.

    Google Scholar 

  68. Zakarija M, McKenzie JM. Pregnancy-associated changes in the thyroid stimulating antibody of Graves’ disease and the relationship to neonatal hyperthyroidism. J Clin Endocrinol Metab 1983; 57: 1036–1040.

    Article  PubMed  CAS  Google Scholar 

  69. Erickson LE, Fredriksson G. Phylogeny and ontogeny of the thyroid gland. In: Greer ME, ed. The thyroid gland (comprehensive endocrinology). New York: Raven Press, 1990: 1–35.

    Google Scholar 

  70. Fisher DA, Dussault JH, Sack J, Chopra IJ. Ontogenesis of hypothalamic-pituitary-thyroid function and metabolism in man, sheep and rat. Recent Prog Horm Res 1977; 33: 59–116.

    Google Scholar 

  71. Casey ML, MacDonald PC, Simpson ER. Endocrinological changes in pregnancy. In: Wilson JD, Foster DW, eds. Williams’ textbook of endocrinology. Philadelphia: WB Saunders, 1992: 977–991

    Google Scholar 

  72. Grumbach MM, Kaplan SL. Fetal pituitary hormones and the maturation of the contrai nervous system regulation of anterior pituitary function. In: Gluck L, ed. Modern perinatal medicine. Chicago: Year Book Medical Publishers, 1974: 247–273.

    Google Scholar 

  73. Fisher DA. Disorders of the thyroid in the newborn and infant. In: Sperling MA, ed. Pediatric endocrinology. Philadelphia: WB Saunders, 1996: 51–70.

    Google Scholar 

  74. Fisher DA, Polk DH. The ontogenesis of thyroid hormone function and actions. In: Tulchinsky D, Little AB, eds. Maternal-fetal endocrinology. Philadelphia: WB Saunders, 1994: 321–334.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Menon, R.K., Sperling, M.A. (1998). Developmental Endocrinology in the Fetal-Placental Unit. In: Cowett, R.M. (eds) Principles of Perinatal—Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1642-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1642-1_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7227-4

  • Online ISBN: 978-1-4612-1642-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics