Advertisement

Methodology for the Study of Metabolism: Breath Testing

  • Peter D. Klein
  • Hans Helge

Abstract

The breath test based on the use of 13C-labeled substrate offers the pediatric gastroenanterologist and other physicians interested in metabolism, an important metabolic and diagnostic tool. Because they are nonradioactive as well as noninvasive, they may be used safely in children in all stages of development, including the preterm neonate. The substrate is administered orally in most applications, and the breath samples required for isotopic determination can be collected from either an awake or sleeping subject. The 13C breath test is characterized by the administration of a substrate in which a small labeled functional group is attached by a target bond. When an appropriate enzyme cleaves this bond, the functional group is released and rapidly metabolized to labeled CO2, which can be detected in breath samples from the subject. Breath tests are conventionally divided into two categories: the endolytic test, which reflects organ targeted enzyme function, and the xenolytic test, which reflects enzyme activity of gastric or intestinal organisms.

Keywords

Breath Test Breath Sample Urea Breath Test Maple Syrup Urine Disease Acid Breath Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schwabe AD, Cozzett FJD, Bennett LR. Estimation of fat malabsorption by monitoring of expired radiocarbon dioxide after feeding a radioactive fat. Gastroenterology 1962; 42: 285–290.PubMedGoogle Scholar
  2. 2.
    Sasaki Y, Iio M, Kameda H, Ueda H, et al. Measurement of 14C-lactose absorption in the diagnosis of lactase deficiency. J Lab Clin Med 1970; 6: 824–835.Google Scholar
  3. 3.
    Sherr HP, Sasaki Y, Newman A, et al. Detection of bacterial deconjugation of bile salts by a convenient breath-analysis technic. N Engl J Med 1971; 285: 656–661.PubMedCrossRefGoogle Scholar
  4. 4.
    Shreeve WW, Cerasi E, Luft R. Metabolism of [2-14C] pyruvate in normal, acromegalic and HGH-treated human subjects. Acta Endocrinol 1970; 65: 155–169.PubMedGoogle Scholar
  5. 5.
    Schoeller DA, Schneider JF, Solomons N, et al. Clinical diagnosis with the stable isotope 13C in CO2 breath tests: methodology and fundamental considerations. J Lab Clin Med 1977; 90: 412–421.PubMedGoogle Scholar
  6. 6.
    Schoeller DA, Klein PD. A simplified technique for collecting breath CO2 for isotope ratio mass spectrometry. Biomed Mass Spectrom 1978; 5: 29–31.PubMedCrossRefGoogle Scholar
  7. 7.
    Schoeller DA, Klein PD. A microprocessor-controlled mass spectrometer for the fully automated purification and isotopic analysis of breath CO2. Biomed Mass Spectrom 1979; 6: 350–355.PubMedCrossRefGoogle Scholar
  8. 8.
    Schneider JF, Schoeller DA, Nemchausky B, et al. Validation of 13CO2 breath analysis as a measurement of demethylation of stable isotope-labeled aminopyrine in man. Clin Chim Acta 1978; 84: 153–162.PubMedCrossRefGoogle Scholar
  9. 9.
    Goromaru T, Furuta T, Baba S, et al. Metabolic studies of aminopyrine in rat and man by using stable isotope tracer techniques. Chem Pharm Bull 1981; 29: 172. 4–1729.Google Scholar
  10. 10.
    Nau H, Rating D, Koch S, et al. Valproic acid and its metabolites: placental transfer, neonatal pharmacokinetics, transfer via mother’s milk and clinical status in neo- nates of epileptic mothers. J Pharmacol Exp Ther 1981; 219: 768–777.PubMedGoogle Scholar
  11. 11.
    Irving CS, Schoeller DA, Nakamura KI, et al. The aminopyrine breath test as a measure of liver function. A quantitative description of its metabolic basis in normal subjects. J Lab Clin Med 1982; 100: 356–373.PubMedGoogle Scholar
  12. 12.
    Jager-Roman E, Rating D, Platzek T, et al. Development of N-demethylase activity measured with the 13Caminopyrine breath test. Eur J Pediatr 1982; 139: 129–134.PubMedCrossRefGoogle Scholar
  13. 13.
    Schoeller DA, Baker AL, Monroe PS, et al. Comparison of different methods expressing results of the aminopyrine breath test. Hepatology 1982; 2: 455–462.PubMedCrossRefGoogle Scholar
  14. 14.
    Rating D, Jager-Roman E, Nau H, et al. Enzyme induction in neonates after fetal exposure to antiepileptic drugs. Pediatr Pharmacol 1983; 3: 209–218.Google Scholar
  15. 15.
    Sakamoto A, Kakui S, Kawamura I, et al. Quantitative assessment of hepatic microsomal function by breath test using 13C-aminopyrine. Jpn J Gastroenterol 1983; 80: 2603.Google Scholar
  16. 16.
    Shulman RJ, Irving CS, Boutton TW, et al. Effect of infant age on aminopyrine breath test results. Pediatr Res 1985; 19: 441–445.PubMedCrossRefGoogle Scholar
  17. 17.
    Goodnight-White SJ, Miller CC, Haber SE, et al. Lactate kinetics in severe COPD. Implications of an abnormal aminopyrine breath test. Chest 1992; 01: 268S–273S.Google Scholar
  18. 18.
    Meyer-Wyss B, Renner E, Luo H, et al. Assessment of lidocaine metabolite formation in comparison with other quantitative liver function tests. J Hepatol 1993; 19: 133–139.PubMedCrossRefGoogle Scholar
  19. 19.
    Guitton J, Souillet G, Riviere JL, et al. Action of methotrexate on cytochrome P-450 monooxygenases in rats. Study performed with [13C]-aminopyrine micro breath test. Eur J Drug Metab Pharmacokinet 1994; 19: 119–124.PubMedCrossRefGoogle Scholar
  20. 20.
    Mion F, Geloen A, Rousseau M, et al. Mechanism of carbon tetrachloride autoprotection: an in vivo study based on 13C-aminopyrine and 13C-galactose breath tests. Life Sci 1994; 54: 2093–2098.PubMedCrossRefGoogle Scholar
  21. 21.
    Opekun AR, Klein PD, Graham DY. 13C aminopyrine breath test detects altered liver metabolism caused by low-dose oral contraceptives. Dig Dis Sci 1995; 40: 2417–2422.PubMedCrossRefGoogle Scholar
  22. 22.
    Arnaud MJ, Thelin-Doerner A, Ravussin E, et al. Study of the demethylation of [1,3,7-Me-13C] caffeine in man using respiratory exchange measurements. Biomed Mass Spectrom 1980; 7: 521–524.PubMedCrossRefGoogle Scholar
  23. 23.
    Brazier JL, Ribon B, Desage M, et al. Study of theophylline metabolism in premature human newborns using stable isotope labelling. Biomed Mass Spectrom 1980; 7: 189–192.PubMedCrossRefGoogle Scholar
  24. 24.
    Kotake AN, Schoeller DA, Lambert GH, et al. The caffeine CO2 breath test: dose response and route of N-demethylation in smokers and nonsmokers. Clin Pharmacol Ther 1982; 32: 261–269.PubMedCrossRefGoogle Scholar
  25. 25.
    Lambert GH, Schoeller DA, Kotake AN, et al. The effect of age, gender, and sexual maturation on the caffeine breath test. Dev Pharmacol Ther 1986; 9: 375–388.PubMedGoogle Scholar
  26. 26.
    Pons G, Blais JC, Rey E, et al. Maturation of caffeine Ndemethylation in infancy: a study using the 13002 breath test. Pediatr Res 1988; 23: 632–636.PubMedCrossRefGoogle Scholar
  27. 27.
    Levitsky LL, Schoeller DA, Lambert GH, et al. Effect of growth hormone therapy in growth hormone-deficient children on cytochrome P-450-dependent 3-Ndemethylation of caffeine as measured by the caffeine 13CO2 breath test. Dev Pharmacol Ther 1989;12:90–95.PubMedGoogle Scholar
  28. 28.
    Kruger N, Helge H, Neubert D. The significance of PCDD’s/PCDF’s (dioxins) in pediatrics. [German] Monatsschr Kinderheilkd 1991; 139: 434–441.PubMedGoogle Scholar
  29. 29.
    Kruger N, Helge H, Neubert D. CO2 breath tests using 14C-caffeine, 14C-methacetin and 14C-phenacetin for assessing postnatal development of monooxygenase activities in rats and marmosets. Dev Pharmacol Ther 1991; 16: 164–175.PubMedGoogle Scholar
  30. 30.
    Lewis FW, Adair O, Hossack KF, et al. Plasma glucagon concentration in cirrhosis is related to liver function but not to portal-systemic shunting, systemic vascular resistance, or urinary sodium excretion. J Lab Clin Med 1991; 117: 67–75.PubMedGoogle Scholar
  31. 31.
    Rost KL, Brosicke H, Brockmoller J, et al. Increase of cytochrome P4501A2 activity by omeprazole: evidence by the 13C-[N-3-methyl]-caffeine breath test in poor and extensive metabolizers of S-mephenytoin. Clin Pharmacol Ther 1992; 52: 170–180.PubMedCrossRefGoogle Scholar
  32. 32.
    Rost KL, Brosicke H, Heinemeyer G, et al. Specific and dose-dependent enzyme induction by omeprazole in human beings. Hepatology 1994; 20: 1204–1212.PubMedCrossRefGoogle Scholar
  33. 33.
    Rost KL, Roots I. Accelerated caffeine metabolism after omeprazole treatment is indicated by urinary metabolite ratios: coincidence with plasma clearance and breath test. Clin Pharmacol Ther 1994; 55: 402–411.PubMedCrossRefGoogle Scholar
  34. 34.
    Lauterburg BH, Grattagliano I, Gmur R, et al. Noninvasive assessment of the effect of xenobiotics on mitochondrial function in human beings: studies with acetylsalicylic acid and ethanol with the use of the carbon 13-labeled ketoisocaproate breath test. J Lab Clin Med 1995; 125: 378–383.PubMedGoogle Scholar
  35. 35.
    Watkins JB, Klein PD, Schoeller DA, et al. Diagnosis and differentiation of fat malabsorption in children using 13C-labeled lipids: trioctanoin, triolein, and palmitic acid breath tests. Gastroenterology 1982; 82: 911–917.PubMedGoogle Scholar
  36. 36.
    Arimoto K, Sakuragawa N, Suehiro M, et al. Abnormal 13C-palmitate breath test in epileptic patients treated with valproic acid. Brain Dev 1986; 18: 354–359.Google Scholar
  37. 37.
    Park W, Paust H, Brosicke H, et al. Impaired fat utilization in parenterally fed low-birth-weight infants suffering from sepsis. J Parenter Enteral Nutr 1986; 10: 627–630.CrossRefGoogle Scholar
  38. 38.
    Arimoto K, Sakuragawa N, Suehiro M, et al. Abnormal 13C-fatty acid breath tests in patients treated with valproic acid. J Child Neurol 1988; 3: 250–257.PubMedCrossRefGoogle Scholar
  39. 39.
    Watkins JB, Schoeller DA, Klein PD, et al. 13Ctrioctanoin: a nonradioactive breath test to detect fat malabsorption. J Lab Clin Med 1977; 90: 422–430.PubMedGoogle Scholar
  40. 40.
    Suehiro M, Yamada H, Iio M, et al. 13C-trioctanoin breath test for diagnosis of fat malabsorption (author’s transl). Jpn J Nucl Med 1981; 18: 211–214.Google Scholar
  41. 41.
    Paust H, Park W, Schroder H. Current status of parenteral feeding with fat infusions. Clinical experiences with premature and newborn infants. Infusionstherapie Klin Ernahr 1983; 10: 216–222.Google Scholar
  42. 42.
    Paust H, Park W, Brosicke H, et al. Fat utilization in newborn infants with and without heparin administration. Comparative study with the 13C-triolein breath test. Infusionstherapie Klin Ernahr 1985; 12: 85–87.Google Scholar
  43. 43.
    Knoblach G, Paust H, Park W, et al. Determination of the oxidation rate of medium-chain triglycerides in newborn infants with the 13C trioctanoin breath test. Monatsschr Kinderheilkd 1988; 136: 26–30.PubMedGoogle Scholar
  44. 44.
    Yamada T, Nishida H, Sakamoto S, et al. The effect of MCT oil supplement in very low birth weight infants, with evaluation by the 13C-labeled MCT breath test. Acta Paediatr Jpn 1988; 30: 564–568.PubMedCrossRefGoogle Scholar
  45. 45.
    Sulkers EJ, Lafeber HN, Sauer PJ. Quantitation of oxidation of medium-chain triglycerides in preterm infants. Pediatr Res 1989; 26: 294–297.PubMedCrossRefGoogle Scholar
  46. 46.
    Vantrappen GR, Rutgeerts PJ, Ghoos YF, et al. Mixed triglyceride breath test: a noninvasive test of pancreatic lipase activity in the duodenum. Gastroenterology 1989; 96: 1126–1134.PubMedGoogle Scholar
  47. 47.
    Murphy MS, Eastham EJ, Nelson R, et al. Non-invasive assessment of intraluminal lipolysis using a 13CO2 breath test. Arch Dis Child 1990; 65: 574–578.PubMedCrossRefGoogle Scholar
  48. 48.
    Hoshi J, Nishida H, Yasui M, et al. [13C] breath test of medium-chain triglycerides and oligosaccharides in neonates. Acta Paediatr Jpn 1992; 34: 674–677.PubMedCrossRefGoogle Scholar
  49. 49.
    Kato H, Nakao A, Kishimoto W, et al. 13C-labeled trioctanoin breath test for exocrine pancreatic function test in patients after pancreatoduodenectomy. Am J Gastroenterol 1993; 88: 64–69.PubMedGoogle Scholar
  50. 50.
    Ghoos YF, Maes BD, Geypens BJ, et al. Measurement of gastric emptying rate of solids by means of a carbon-labeled octanoic acid breath test. Gastroenterology 1993; 104: 1640–1647.PubMedGoogle Scholar
  51. 51.
    Maes BD, Hiele MI, Geypens BJ, et al. Pharmacological modulation of gastric emptying rate of solids as measured by the carbon labelled octanoic acid breath test: influence of erythromycin and propantheline [published erratum appears in Gut 1994;35:866]. Gut 1994; 35: 333–337.PubMedCrossRefGoogle Scholar
  52. 52.
    Maes BD, Ghoos YF, Rutgeerts PJ, et al. [*C]octanoic acid breath test to measure gastric emptying rate of solids. Dig Dis Sci 1994; 39: 104S–106S.PubMedCrossRefGoogle Scholar
  53. 53.
    Maes BD, Ghoos YF, Geypens BJ, et al. Combined carbon-13-glycine/carbon-14-octanoic acid breath test to monitor gastric emptying rates of liquids and solids. J Nucl Med 1994; 35: 824–831.PubMedGoogle Scholar
  54. 54.
    Mossi S, Meyer-Wyss B, Beglinger C, et al. Gastric emptying of liquid meals measured noninvasively in humans with [13C]acetate breath test. Dig Dis Sci 1994; 39: 107S–109S.PubMedCrossRefGoogle Scholar
  55. 55.
    Braden B, Adams S, Duan LP, et al. The [13C]acetate breath test accurately reflects gastric emptying of liquids in both liquid and semisolid test meals. Gastroenterology 1995; 108: 1048–1055.PubMedCrossRefGoogle Scholar
  56. 56.
    Maes BD, Ghoos YF, Geypens BJ, et al. Influence of octreotide on the gastric emptying of solids and liquids in normal healthy subjects. Aliment Pharmacol Ther 1995; 9: 11–18.PubMedCrossRefGoogle Scholar
  57. 57.
    Maes BD, Ghoos YF, Geypens BJ, et al. Relation between gastric emptying rate and energy intake in children compared with adults. Gut 1995; 36: 183–188.PubMedCrossRefGoogle Scholar
  58. 58.
    Pfaffenbach B, Wegener M, Adamek RJ, et al. Noninvasive 13C octanoic acid breath test for measuring stomach emptying of a solid test meal—correlation with scintigraphy in diabetic patients and reproducibility in healthy probands. Z Gastroenterol 1995; 33: 141–145.PubMedGoogle Scholar
  59. 59.
    Solomons N, Schoeller DA, Wagonfeld J, et al. Application of a stable isotope (13C)-labeled glycocholate breath test to diagnose bacterial overgrowth and ileal dysfunction. J Lab Clin Med 1977; 90: 431–439.PubMedGoogle Scholar
  60. 60.
    King CE, Toskes PP. Breath tests in the diagnosis of small intestinal bacterial overgrowth. Crit Rev Clin Lab Sci 1984; 21: 269–281.PubMedCrossRefGoogle Scholar
  61. 61.
    Pressman, JH Hofmann AF, Witztum KF, et al. Limitations of indirect methods of estimating small bowel transit in man. Dig Dis Sci 1987; 32: 689–699.PubMedCrossRefGoogle Scholar
  62. 62.
    Heine WE, Berthold HK, Klein PD. A novel stable isotope breath test: 13C labeled glycosylureides as noninvasive markers of intestinal transit time. Am J Gastroenterol 1995; 90: 93–98.PubMedGoogle Scholar
  63. 63.
    Thompson GN, Walter JH, Leonard TV, et al. In vivo enzyme selectivity in inborn errors of metabolism. Metabolism 1990; 39: 799–807.PubMedCrossRefGoogle Scholar
  64. 64.
    Elsas U, Ellerine NP, Klein PD. Practical methods to estimate whole body leucine oxidation in maple syrup urine disease. Pediatr Res 1993; 33: 445–451.PubMedCrossRefGoogle Scholar
  65. 65.
    Berry GT, Nissim I, Mazur AT, et al. In vivo oxidation of [13C] galactose in patients with galactose-phosphate uridyltransferase deficiency. J Biochem Mol Med 1995; 96: 158–165CrossRefGoogle Scholar
  66. 66.
    Warren JR. Unidentified curved bacilli on epithelium in active chronic gastritis. Lancet 1983; 2: 1273–1275.Google Scholar
  67. 67.
    Marshall BJ, McGechie DB, Rogers PA, et al. Pyloric campylobacter infection and gastrointestinal disease. Med J Aust 1985; 142: 439–444.PubMedGoogle Scholar
  68. 68.
    NIH Consensus Conference: Helicobacter pylori in peptic ulcer disease. NIH Consensus Development Panel on Helicobacter pylori in Peptic Ulcer Disease. JAMA 1994;272:65–69.Google Scholar
  69. 69.
    Graham DY, Klein PD, Evans DJ Jr, et al. Campylobacter pylori detected noninvasively by the 13C-urea breath test. Lancet 1987; 1: 1174–1177.PubMedCrossRefGoogle Scholar
  70. 70.
    Rauws EA. Detecting Campylobacter pylori with the 13C-and 14C-urea breath test. Scand J Gastroenterol Suppl 1989; 160: 25–26.PubMedCrossRefGoogle Scholar
  71. 71.
    Cooreman M, Hengels KJ, Krausgrill P, et al. 13C-urea breath test as a non-invasive method for the detection of Helicobacter (Campylobacter) pylori. Dtsch Med Wochenschr 1990; 115: 367–371.PubMedCrossRefGoogle Scholar
  72. 72.
    Ormand JE, Talley NJ, Carpenter HA, et al. [14C]urea breath test for diagnosis of Helicobacter pylori. Dig Dis Sci 1990; 35: 879–884.PubMedCrossRefGoogle Scholar
  73. 73.
    Bell GD, Powell K, Weil J, Harrison G, et al. 13C-urea breath test for Helicobacter pylori infection [letter; comment]. Gut 1991; 32: 551–552.PubMedCrossRefGoogle Scholar
  74. 74.
    Good DJ, Dill S, Mossi S, et al. Sensitivity and specificity of a simplified, standardized 13C-urea breath test for the demonstration of Helicobacter pylori. Schweiz Med Wochenschr 1991; 121: 764–766.PubMedGoogle Scholar
  75. 75.
    Logan RP, Polson RJ, Misiewicz JJ, et al. Simplified single sample 13C urea breath test for Helicobacter pylori: comparison with histology, culture, and ELISA serology. Gut 1991; 32: 1461–1464.PubMedCrossRefGoogle Scholar
  76. 76.
    Lotterer E, Ramaker J, Ludtke FE, et al. The simplified 13C-urea breath test—one point analysis for detection of Helicobacter pylori infection. Z Gastroentero l1991; 29: 590–594.Google Scholar
  77. 77.
    Hartman NG, Jay M, Hill DB, et al. Noninvasive detection of Helicobacter pylori colonization in stomach using [11C]urea. Dig Dis Sci 1992; 37: 618–621.PubMedCrossRefGoogle Scholar
  78. 78.
    Vandenplas Y, Blecker U, Devreker T, et al. Contribution of the 13C-urea breath test to the detection of Helicobacter pylori gastritis in children. Pediatrics 1992; 90: 608–611.PubMedGoogle Scholar
  79. 79.
    Drumm B. Helicobacter pylori in the pediatric patient. [Review]. Gastroenterol Clin North Am 1993;22:169–182.PubMedGoogle Scholar
  80. 80.
    Ji J, Li XM, Jiang GH. Diagnosis of Helicobacter pylori infection by 13C-urea breath test. Chin J Int Med 1993; 32: 170–172Google Scholar
  81. 81.
    Klein PD, Graham DY. Minimum analysis requirements for the detection of Helicobacter pylori infection by the 13C-urea breath test. Am J Gastroenterol 1993; 88: 1865 1869.Google Scholar
  82. 82.
    Loffeld RJ, Stobberingh E, Arends JW. A review of diagnostic techniques for Helicobacter pylori infection. [Review]. Dig Dis 1993; 11: 173–180.PubMedCrossRefGoogle Scholar
  83. 83.
    Lotterer E, Ludtke FE, Tegeler R, et al. The 13C-urea breath test-detection of Helicobacter pylori infection in patients with partial gastrectomy. Z Gastroenterol 1993; 31: 115–119.PubMedGoogle Scholar
  84. 84.
    Lotterer E, Ludtke FE, Tegeler R, et al. The 13C-urea breath test, Helicobacter pylori infection, and the operated stomach [letter]. J Clin Gastroenterol 1993; 16: 82–84.PubMedCrossRefGoogle Scholar
  85. 85.
    Moulton-Barrett R, Triadafilopoulos G, Michener R, et al. Serum 13C-bicarbonate in the assessment of gastric Helicobacter pylori urease activity. Am J Gastroenterol 1993; 88: 369–374.PubMedGoogle Scholar
  86. 86.
    Adamek RJ, Freitag M, Labenz J, et al. The modified 13C-urea breath test in the diagnosis of Helicobacter pylori colonization of the gastric mucosa. Dtsch Med Wochenschr 1994; 119: 1569–1572.PubMedCrossRefGoogle Scholar
  87. 87.
    Alcalde M, Perez Garcia JI, Sanchez P, et al. Usefulness of the breath test with urea-13C in the diagnosis of Helicobacter pylori infection. Med Clin 1994; 103: 371–373.Google Scholar
  88. 88.
    Blecker U, Lanciers S, Keppens E, et al. Evolution of Helicobacter pylori positivity in infants born from positive mothers. J Pediatr Gastroenterol Nutr 1994; 19: 87–90.PubMedCrossRefGoogle Scholar
  89. 89.
    Braden B, Duan LP, Caspary WF, et al. More convenient 13C-urea breath test modifications still meet the criteria for valid diagnosis of Helicobacter pylori infection. Z Gastroenterol 1994; 32: 198–202.PubMedGoogle Scholar
  90. 90.
    Braden B, Haisch M, Duan LP, et al. Clinically feasible stable isotope technique at a reasonable price: analysis of 13CO2/12CO2-abundance in breath samples with a new isotope selective-nondispersive infrared spectrometer. Z Gastroenterol 1994; 32: 675–678.PubMedGoogle Scholar
  91. 91.
    Klein PD, Gilman RH, Leon-Barua R, et al. The epidemiology of Helicobacter pylori in Peruvian children between 6 and 30 months of age. Am J Gastroentero1 1994; 89: 2196–2200.PubMedGoogle Scholar
  92. 92.
    Mion F, Delecluse HJ, Rousseau M, et al. 13C-urea breath test for the diagnosis of Helicobacter pylori infection. Comparison with histology. Gastroenterol Clin Biol 1994; 18: 1106–1111.PubMedGoogle Scholar
  93. 93.
    Reinauer S, Goerz G, Ruzicka T, et al. Helicobacter pylori in patients with systemic sclerosis: detection with the 13C-urea breath test and eradication. Acta Dermatol Venereol 1994; 74: 361–363.Google Scholar
  94. 94.
    Atherton JC, Washington N, Blackshaw PE, et al. Effect of a test meal on the intragastric distribution of urea in the 13C-urea breath test for Helicobacter pylori. Gut 1995; 36: 337–340.PubMedCrossRefGoogle Scholar
  95. 95.
    Caspary WF. 13C-urea breath test. Patient-friendly gold standard in the diagnosis of Helicobacter pylori infection with long term cost control potential. Dtsch Med Wochenschr 1995;120:976–978.PubMedGoogle Scholar
  96. 96.
    Cutler AF, Haystad S, Mac K, et al. Accuracy of invasive and noninvasive tests to diagnose Helicobacter pylori infection. Gastroenterology 1995; 109: 136–141.PubMedCrossRefGoogle Scholar
  97. 97.
    Koletzko S, Haisch M, Seeboth I, et al. Isotope-selective non-dispersive infrared spectrometry for detection of Helicobacter pylori infection with 13C-urea breath test. Lancet 1995; 345: 961–962.PubMedCrossRefGoogle Scholar
  98. 98.
    Nakagawa T, Ohara H, Yamamoto M, et al. 13C-urea breath test for the detection of Helicobacter pylori infection and the assessment of therapeutic effect. Jpn J Gastroenterol 1995; 92: 264.Google Scholar
  99. 99.
    Slomianski A, Schubert T, Cutler AF. [13C]urea breath test to confirm eradication of Helicobacter pylori. Am J Gastroenterol 1995; 90: 224–226.PubMedGoogle Scholar
  100. 100.
    Wildgrube HJ. The 13C-urea breath test in Helicobacter pylori colonization of the gastric mucosa (letter). Dtsch Med Wochenschr 1995; 120: 940–942.PubMedGoogle Scholar
  101. 101.
    Yamashiro Y, Oguchi S, Otsuka Y, et al. Helicobacter pylori colonization in children with peptic ulcer disease. III. Diagnostic value of the 13C-urea breath test to detect gastric H. pylori colonization. Acta Paediatr Jpn 1995; 37: 12–16.PubMedCrossRefGoogle Scholar
  102. 102.
    Braden B, Haisch M, Duan LP, et al. Clinically feasible stable isotope technique at a reasonable price: analysis of 13CO2/12CO2-abundance in breath samples with a new isotope selective-nondispersive infrared spectrometer. Z. Gastroenterol 1994; 12: 675–678.Google Scholar
  103. 103.
    Koletzko S, Haisch M, Seeboth I, et al. Isotope-selective nondispersive infrared spectrometry for detection of Helicobacter pylori infection with the 13C-urea breath test. Lancet 1995; 345: 961–962.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Peter D. Klein
  • Hans Helge

There are no affiliations available

Personalised recommendations