Skip to main content

Exercise in Pregnancy: Effects on Cardiorespiratory Physiology and Metabolism

  • Chapter
Principles of Perinatal—Neonatal Metabolism
  • 463 Accesses

Abstract

Pregnancy and exercise both demonstrate the profound adaptive response of which the mammalian body is capable. This chapter examines cardiorespiratory physiology as it is affected by pregnancy at rest and under conditions of acute exertion, and the metabolic and endocrine responses to acute exertion in the nonpregnant and pregnant states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hytten FE, Paintin DB. Increase in plasma volume during normal pregnancy. J Obstet Gynaecol Br Comm 1963; 70: 402–407.

    CAS  Google Scholar 

  2. Lund CI, Donovan JC. Blood volume during pregnancy. Am J Obstet Gynecol 1967; 98: 393–403.

    Google Scholar 

  3. Longo LD. Maternal blood volume and cardiac output during pregnancy: a hypothesis of endocrinologic control. Am J Physiol 1983; 245: R720 - R729.

    PubMed  CAS  Google Scholar 

  4. Capeless EL, Clapp JF. Cardiovascular changes in early phase of pregnancy. Am J Obstet Gynecol 1989; 161: 1449–1453.

    Google Scholar 

  5. Lees MM, Taylor SH, Scott DB, et al. A study of cardiac output at rest throughout pregnancy. J Obstet Gynaecol Br Comm 1967; 74: 319–328.

    CAS  Google Scholar 

  6. Laird-Meeter K, van, de Ley G, Born TH et al. Cardiocirculatory adjustments during pregnancy-an echocardio-graphic study. Clin Cardiol 1979; 2: 328–332.

    PubMed  CAS  Google Scholar 

  7. Rubler S, Damani PM, Pinto ER. Cardiac size and performance during pregnancy estimated with echocardiography. Am J Cardiol 1977; 40: 534–540.

    PubMed  CAS  Google Scholar 

  8. Duvekot JJ, Cheriex EC, Pieters FAA, et al. Early pregnancy changes in hemodynamics and volume homeostasis are consecutive adjustments triggered by a primary fall in systemic vascular tone. Am J Obstet Gynecol 1993; 169: 1382–1392.

    PubMed  CAS  Google Scholar 

  9. Rose DJ, Bader ME, Bader RA, et al. Catheterization studies of cardiac hemodynamics in normal pregnant women with reference to left ventricular work. Am J Obstet Gynecol 1956; 72: 233–246.

    PubMed  CAS  Google Scholar 

  10. Walters WAW, MacGregor WG, Hills M. Cardiac output at rest during pregnancy and the puerperium. Clin Sci 1966; 30: 1–11.

    PubMed  CAS  Google Scholar 

  11. Ueland K, Novy MJ, Peterson EN, et al. Maternal cardiovascular dynamics. Am J Obstet Gynecol 1969; 104: 856–864.

    PubMed  CAS  Google Scholar 

  12. Spatling L, Falenstein F, Huch A, et al. The variability of cardiopulmonary adaptation to pregnancy at rest and during exercise. Br J Obstet Gynaecol 1992; 99: 1–40.

    PubMed  Google Scholar 

  13. Clark SL, Southwick J, Pivarnik JM, et al. A comparison of cardiac index in normal term pregnancy using thoracic electrical bio-impedance and oxygen extraction (Fick) techniques. Obstet Gynecol 1994; 83: 669–672.

    PubMed  CAS  Google Scholar 

  14. Van Oppen AC, Stigter RH, Bruinse HW. Cardiac output in normal pregnancy: a critical review. Obstet Gynecol 1996; 87: 310–318.

    PubMed  Google Scholar 

  15. Wilson M, Morganti A, Zervoudakis J, et al. Blood pressure, the renin-aldosterone system and sex steroids throughout normal pregnancy. Am J Med 1980; 68: 97–104.

    PubMed  CAS  Google Scholar 

  16. Mabie WC, DiSessa TG, Crocker LG, et al. A longitudinal study of cardiac output in normal human pregnancy. Am J Obstet Gynecol 1994; 170: 849–856.

    PubMed  CAS  Google Scholar 

  17. Palmer SK, Zamudio S, Coffin C, et al. Quantitative estimation of human uterine artery blood flow and pelvic blood flow redistribution in pregnancy. Obstet Gynecol 1992; 9: 1000–1006.

    Google Scholar 

  18. Ikeda T, Ikenoue T, Mori N, et al. Effect of early pregnancy on maternal regional cerebral blood flow. Am J Obstet Gynecol 1993; 168: 1303–1308.

    PubMed  CAS  Google Scholar 

  19. Ekholm EMK, Erkkola RU. Autonomic cardiovascular control in pregnancy. Eur J Obstet Gynecol Reprod Biol 1996; 64: 29–36.

    PubMed  CAS  Google Scholar 

  20. Airaksinen KEJ, Salmela PI, Ikaheimo MJ, et al. Effect of pregnancy on autonomic nervous function and heart rate in diabetic and nondiabetic women. Diabetes Care 1987; 10: 748–751.

    PubMed  CAS  Google Scholar 

  21. Ekholm EMK, Piha SJ, Antina KJ, et al. Cardiovascular autonomic reflexes in mid-pregnancy. Br J Obstet Gynaecol 1993; 100: 177–182.

    PubMed  CAS  Google Scholar 

  22. Fawer R, Dettling A, Weihs D, et al. Effect of the menstrual cycle, oral contraception and pregnancy on forearm blood flow, venous distensibility and clotting factors. Eur J Clin Pharmacol 1978; 13: 251–257.

    PubMed  CAS  Google Scholar 

  23. Barwin BN, Roddie IC. Venous distensibility during pregnancy determined by graded venous congestion. Am J Obstet Gynecol 1976; 125: 921–923.

    PubMed  CAS  Google Scholar 

  24. Knuttgen HG, Emerson K. Physiological response to pregnancy at rest and during exercise. J Appl Physiol 1974; 36: 549–553.

    Google Scholar 

  25. Pernoll ML, Metcalfe J, Schlenker TT, et al. Oxygen consumption at rest and during exercise in pregnancy. Respir Physiol 1975; 25: 285–293.

    PubMed  CAS  Google Scholar 

  26. Wolfe LA, Ohtake PJ, Mottola MF, et al. Physiological interactions between pregnancy and aerobic exercise. Exerc Sports Sci Rev 1989; 17: 295–356.

    CAS  Google Scholar 

  27. Boutourline-Young H, Boutourline-Young E. Alveolar carbon dioxide levels in pregnant parturient and lactating subjects. J Obstet Gynaecol Br Comm 1956; 63: 509–528.

    CAS  Google Scholar 

  28. Sady SA, Carpenter MW, Thompson PD, et al. Cardiovascular response to cycle exercise during and after pregnancy. J Appl Physiol 1989; 65: 336–341.

    Google Scholar 

  29. Clapp JF. Metabolic adaptations during pregnancy. Presented at the New England Perinatal Society Annual Meeting, 1989.

    Google Scholar 

  30. Clapp JF. Cardiac output and uterine blood flow in the pregnant ewe. Am J Obstet Gynecol 1978; 130: 419–423.

    PubMed  CAS  Google Scholar 

  31. Carpenter MW, Sady SP, Sady M, et al. Effect of maternal weight gain during pregnancy on exercise performance. J Appl Physiol 1990; 68: 1173–1176.

    PubMed  CAS  Google Scholar 

  32. Rowell LB. Human circulation. Regulation during physical stress. New York: Oxford University Press, 1986.

    Google Scholar 

  33. Faulkner JA, Heigenhauser GF, Schork MA. The cardiac output-oxygen uptake relationship of men during graded bicycle ergometry. Med Sci Sports Exerc 1977; 9: 148–154.

    CAS  Google Scholar 

  34. Lewis SF, Taylor WF, Graham RM, et al. Cardiovascular responses to exercise as functions of absolute and relative work load. J Appl Physiol 1983; 54: 1314–1323.

    PubMed  CAS  Google Scholar 

  35. Mitchell JH, Schmidt RF. Cardiovascular reflex control by afferent fibers from skeletal muscle receptors. In: Shepherd JT, Abboud FM, eds. Handbook of physiology. Section 2: The cardiovascular system volume III. Peripheral circulation and organ blood flow, part 2. Bethesda, MD: American Physiological Society, 1983: 623–660.

    Google Scholar 

  36. Brooks GA, Fahey TD. Exercise physiology: human bioenergetics and its applications. New York: John Wiley, 1985.

    Google Scholar 

  37. McArdle WD, Katch FI, Katch VL. Exercise physiology, energy, nutrition, and human performance. Philadelphia: Lea & Febiger, 1986.

    Google Scholar 

  38. Plotnick GD, Becker LC, Fisher ML, et al. Use of the Frank-Starling mechanism during submaximal versus maximal upright exercise. Am J Physiol (Heart Circ Physiol) 1986; 251: H1101 - H1105.

    CAS  Google Scholar 

  39. Christensen NJ, Galbo H. Sympathetic nervous activity during exercise. Annu Rev Physiol 1985; 45: 139–153.

    Google Scholar 

  40. Dempsey JA. Is the lung built for exercise? Med Sci Sports Exerc 1986; 143–173.

    Google Scholar 

  41. Astrand PO, Rodahl K. Textbook of work physiology. Physiological bases of exercise. New York: McGraw-Hill, 1986.

    Google Scholar 

  42. Deuster PA, Chrousos GP, Luger A, et al. Hormonal and metabolic responses of untrained, moderately trained, and highly trained men to three exercise intensities. Metabolism 1989; 38: 141–148.

    PubMed  CAS  Google Scholar 

  43. Jones NL, Ehrsam RE. The anaerobic threshold. Exerc Sport Sci 1982; Rev 10: 49–83.

    CAS  Google Scholar 

  44. Lotgering FK, Struijmk PC, Van Doom MB, et al. Anaerobic threshold and respiratory compensation in pregnant women. J Appl Physiol 1995; 78: 1772–1777.

    PubMed  CAS  Google Scholar 

  45. Veille JC, Hellerstein HK, Cherry B, Bacevice AE. Effects of advancing pregnancy on left ventricular function during bicycle exercise. Am J Cardiol 1994; 73: 609–610.

    PubMed  CAS  Google Scholar 

  46. Asher UA, Ben-Shlomo I, Said M, Nabil H. The effects of exercise induced tachycardia on the maternal electrocardiogram. Br J Obstet Gynaecol 1993; 100: 41–45.

    PubMed  CAS  Google Scholar 

  47. Van Doom MB, Lotgering FK, Struijk PC, et al. Maternal and fetal cardiovascular responses to strenuous bicycle exercise. Am J Obstet Gynecol 1992; 166: 854–859.

    Google Scholar 

  48. Pivarnik JM, Lee W, Spillman T, et al. Maternal respiration and blood gases during aerobic exercise performed at moderate altitude. Med Sci Sports Exerc 1992; 24: 868–872.

    PubMed  CAS  Google Scholar 

  49. Carpenter MW, Sady SP, Hoegsberg B, et al. Fetal heart rate response to maternal exertion. JAMA 1988; 259: 3006–3009.

    PubMed  CAS  Google Scholar 

  50. Artal B, Fortunato V, Welton A, et al. A comparison of cardiopulmonary adaptations to exercise in pregnancy at sea level and altitude. Am J Obstet Gynecol 1995; 172: 1170–1180.

    PubMed  CAS  Google Scholar 

  51. Ueland K, Novy MJ, Metcalfe J. Cardiorespiratory responses to pregnancy and exercise in normal women and patients with heart disease. Am J Obstet Gynecol 1973; 115: 4–10.

    PubMed  CAS  Google Scholar 

  52. Lehmann V, Regnat K. Untersuchung sur korperlichen Belastungsfahigkeit schwangeren Frauen. Der Einfluss standardisierter Arbeit auf Herzkreislaufsystem, Ventilation, Gasaustausch, Kohlenhydratstoffwechsel and Saure-Basen-Haushalt. Z Geburtshilfe Perinatol 1976; 180: 279–289.

    PubMed  CAS  Google Scholar 

  53. Blackburn MW, Calloway DH. Heart rate and energy expenditure of pregnancy and lactating women. Am J Clin Nutr 1985; 42: 1161–1169.

    PubMed  CAS  Google Scholar 

  54. Lotgering FK, van den Berg A, Struijk PC, Wallenburg HCS. Arterial pressure response to maximal isometric exercise in pregnant women. Am J Obstet Gynecol 1992; 166: 538–542.

    PubMed  CAS  Google Scholar 

  55. Van Hook JW, Gill P, Eastaerling TR, et al. The hemodynamic effects of isometric exercise during late normal pregnancy. Am J Obstet Gynecol 1993; 169: 870–873.

    PubMed  Google Scholar 

  56. Eliasson AH, Philips YY, Stajduhar KC, et al. Oxygen consumption and ventilation during normal labor. Chest 1992; 102: 467–471.

    PubMed  CAS  Google Scholar 

  57. Morton MJ, Paul. MS, Campos GR, et al. Exercise dynamics in late gestation: effects of physical training. Am J Obstet Gynecol 1985; 152: 91–97.

    PubMed  CAS  Google Scholar 

  58. Clapp JF. Acute exercise stress in the pregnant ewe. Am J Obstet Gynecol 1986; 136: 489–493.

    Google Scholar 

  59. Lotgering FK, Gilbert RD, Longo LD. Exercise responses in pregnant sheep oxygen consumption, uterine blood flow, and blood volume. J Appl Physiol 1983; 55: 834–841.

    PubMed  CAS  Google Scholar 

  60. Chandler KD, Bell AW. Effects of maternal exercise on fetal and maternal respiration and nutrient metabolism in the pregnant ewe. J Dev Physiol 1981; 3: 161–176.

    PubMed  CAS  Google Scholar 

  61. Hohimer AR, McKean TA, Bissonnette JM, et al. Effect of exercise on uterine blood flow in the pregnant Pygmy goat. Am J Physiol 1984; 246: 207–212.

    Google Scholar 

  62. Morris N, Osborn SB, Payling Wright H. Effect uterine blood-flow during exercise in normal and pre-eclamptic pregnancies. Lancet 1956; 2: 481–484.

    Google Scholar 

  63. Morrow RJ, Knox Ritchie JW, Bull SB. Fetal and maternal hemodynamic responses to exercise in pregnancy assessed by Doppler ultrasonography. Am J Obstet Gynecol 1989; 160: 138–140.

    PubMed  CAS  Google Scholar 

  64. Rauramo I, Forss M. Effect of exercise on placental blood flow in pregnancies complicated by hypertension, diabetes or intrahepatic cholestasis. Acta Obstet Gynecol Scand 1988; 67: 15–20.

    PubMed  CAS  Google Scholar 

  65. Lotgering FK, Gilbert RD, Longo LD. Exercise responses in pregnant sheep: blood gases, temperatures and fetal cardiovascular system. J Appl Physiol 1983; 55: 842–850.

    PubMed  CAS  Google Scholar 

  66. Artal R, Paul RH, Romeo Y, Wiswell R. Fetal bradycardia induced by maternal exercise. Lancet 1984;2(8397):258–260.

    Google Scholar 

  67. Artal R, Wiswell R, Romeo Y. Hormonal responses to exercise in diabetic and nondiabetic pregnant patients. Diabetes 1985; 34 (suppl 2): 78–80.

    PubMed  Google Scholar 

  68. Jovanovic L, Kessler A, Peterson CM. Human maternal and fetal response to graded exercise. J Appl Physiol 1985; 58 (5): 1719–1722.

    PubMed  CAS  Google Scholar 

  69. Paolone AM, Shangold M, Paul D, et al. Fetal heart rate measurement during maternal exercise-avoidance of artifact. Med Sci Sports Exerc 1987; 19: 605–609.

    PubMed  CAS  Google Scholar 

  70. Collings C, Curet LB. Fetal heart rate response to maternal exercise. Am J Obstet Gynecol 1985; 151: 498–501.

    PubMed  CAS  Google Scholar 

  71. Carpenter MW, Sady SP, Haydon B, et al. Maternal exercise duration and intensity affect fetal heart rate. American College of Sports Medicine Annual Meeting, 1989.

    Google Scholar 

  72. Webb KA, Wolfe LA, McGrath MJ. Effects of acute and chronic maternal exercise on fetal heart rate. J Appl Physiol 1994; 77: 2207–2213.

    PubMed  CAS  Google Scholar 

  73. Clapp JF, Little KD, Capeless EL. Fetal heart rate response to sustained recreational exercise. Am J Obstet Gynecol 1993; 168: 198–206.

    PubMed  Google Scholar 

  74. Spinnewijn WEM, Lotgering FKK, Struijk PC, Wallenberg HCS. Fetal heart rate and uterine contractility during maternal exercise at term. Am J Obstet Gynecol 1996; 174: 43–48.

    PubMed  CAS  Google Scholar 

  75. McMurray RG, Katz VL, Poe MP, Hackney AC. Maternal and fetal responses to low-impact aerobic dance. Am J Perinatol 1995; 12: 282–285.

    PubMed  CAS  Google Scholar 

  76. Erkkola RU, Pirhonen JP, Kivijarvi AK. Flow velocity waveforms in uterine and umbilical arteries during submaximal bicycle exercise in normal pregnancy. Obstet Gynecol 1992; 79: 611–615.

    PubMed  CAS  Google Scholar 

  77. Hackett GA, Cohen-Overbeek T, Campbell S. The effect of exercise on uteroplacental Doppler waveforms in normal and complicated pregnancies. Obstet Gynecol 1992; 79: 919–923.

    PubMed  CAS  Google Scholar 

  78. Asakura H, Makai A, Yamaguchi M, et al. Ultrasonographic blood flow velocimetry in maternal and umbilical arteries during maternal exercise. Acta Obstet Gynecol Jpn 1994; 46: 308–314.

    CAS  Google Scholar 

  79. Winn HN, Hess O, Goldstein I, et al. Fetal responses to maternal exercise: effect on fetal breathing and body movement. Am J Perinatol 1994; 11: 263–266.

    PubMed  CAS  Google Scholar 

  80. American College of Sports Medicine. Guidelines for exercise testing and prescription. Philadelphia: Lea & Febiger, 1986.

    Google Scholar 

  81. Felig P, Wahren J. Fuel homeostasis in exercise. N Engl J Med 1975; 21: 1078–1084.

    Google Scholar 

  82. Hjemdahl P and Fidholm BB. Direct antilipolytic effect of acedosis in isolated rat adipocytes. Acta Physiol Scand 1977; 101: 294–301.

    PubMed  CAS  Google Scholar 

  83. Brooks GA Amino acid and protein metabolism during exercise and recovery. Med Sci Sports Exerc 1987; 19: S150 - S156.

    PubMed  CAS  Google Scholar 

  84. Dohm GL. Protein as a fuel for endurance exercise. Exerc Sport Sci 1986; Rev 14: 143–173.

    Google Scholar 

  85. Horton ES. Exercise and diabetes mellitus. Med Clin North Am 1988; 72: 1301–1321.

    PubMed  CAS  Google Scholar 

  86. Wasserman K, Whipp BJ, Koyal SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol 1973; 35: 236–243.

    PubMed  CAS  Google Scholar 

  87. Gollnick PD, Bayly WM, Hadgson DR. Exercise intensity, training, diet, and lactate concentration in muscle and blood. Med Sci Sports Exerc 1986; 18: 334–340.

    PubMed  CAS  Google Scholar 

  88. Keul J. The relationship between circulation and metabolism during exercise. Med Sci Sports 1973; 5: 209–219.

    PubMed  CAS  Google Scholar 

  89. Felig P, Wahren J. Role of insulin and glucagon in the regulation of hepatic glucose production during exercise. Diabetes 1979; 28 (suppl 1): 71–75.

    PubMed  CAS  Google Scholar 

  90. Kuhl C, Holst JJ. Plasma glucagon and insulin: glucagon ratio in gestational diabetes. Diabetes 1976; 25 (1): 16–23.

    PubMed  CAS  Google Scholar 

  91. Fischer PM, Hamilton PM, Sutherland HW, et al. The effect of gestation on intravenous glucose tolerance in women. J Obstet Gynaecol Br Cwlth 1974; 81: 285–290.

    Google Scholar 

  92. Lewis SB, Wallin JD, Kuzuya H, et al. Circadian variation of serum glucose, C-peptide immunoreactivity and free insulin in normal and insulin-treated diabetic pregnant subjects. Diabetologia 1976; 12: 343–350.

    PubMed  CAS  Google Scholar 

  93. Catalano PM, Tyzbir ED, McAuliffe T, Sims EAH. Increase in insulin response and insulin resistance in normal pregnant women. Society for Gynecologic Investigation, 36th Annual Meeting. In: Scientific Program and Abstracts. 1989: 275.

    Google Scholar 

  94. Felig P, Lynch V. Starvation in human pregnancy: hypoglycemia, hypoinsulinemia, and hyperketonemia. Science 1970; 170: 990–992.

    PubMed  CAS  Google Scholar 

  95. Bonen A, Campagna P, Gilchrist L, et al. Substrate and endocrine responses during exercise at selected stages of pregnancy. Exerc Pregnancy 1992.

    Google Scholar 

  96. Cowett RM, Carpenter MW, Carr S, et al. Glucose and lactate kinetics during a short exercise bout in pregnancy. Metabolism 1996; 2: 753–758.

    Google Scholar 

  97. Maheux PC, Bonin B, Dizaso A, et al. Glucose homeostasis during spontaneous labor in normal human pregnancy. J Clin Endocrinol Metab 1986; 81: 209–215.

    Google Scholar 

  98. Hoelzer DR, Dalsky GP, Clutter WE, et al. Glucoregulation during exercise: hypoglycemia is prevented by redundant glucoregulatory systems, sympatho-chromaffin activation and changes in islet hormone secretion. J Clin Invest 1986; 77: 212–221.

    PubMed  CAS  Google Scholar 

  99. Christensen NJ, Galbo H, Hansen JF, et al. Catecholamines and exercise. Diabetes 1979; 28 (suppl 1): 58–62.

    PubMed  CAS  Google Scholar 

  100. Scheurink AJW, Steffens AB, Bouritius H, et al. Adrenal and sympathetic catecholamines in exercising rats. J Appl Physiol 1989; 256: R155 - R160.

    CAS  Google Scholar 

  101. Barron WM, Mujais SK, Zinaman M, et al. Plasma catecholamine responses to physiologic stimuli in normal human pregnancy. Am J Obstet Gynecol 1986; 154: 80–84.

    PubMed  CAS  Google Scholar 

  102. Palmer SM, Oakes GK, Champion JA, et al. Catecholamine physiology in the ovine fetus. Am J Obstet Gynecol 1984; 149: 426.

    PubMed  CAS  Google Scholar 

  103. Calles-Escandon J, Felig P. Fuel-hormone metabolism during exercise and after physical training. Clin Chest Med 1984; 5: 3–11.

    PubMed  CAS  Google Scholar 

  104. Galbo H. Hormonal and metabolic adaptation to exercise. New York: G.T. Verlag, 1983.

    Google Scholar 

  105. Vranic M, Kawamori R. Essential roles of insulin and glucagon in regulating glucose fluxes during exercise in dogs. Mechanism of hypoglycemia. Diabetes 1979; 28: 4552.

    Google Scholar 

  106. Pruett EDR. Plasma insulin during prolonged work at near maximal oxygen uptake. J Appl Physiol 1970; 29: 155–158.

    Google Scholar 

  107. Wahren J. Glucose turnover during exercise in healthy men and in patients with diabetes mellitus. Diabetes 1979; 28: 82–88.

    PubMed  Google Scholar 

  108. Mikines KJ, Sonne B, Farrell PA. Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol 1988; 254 (Endocrinol Metab 17): E248 - E259.

    PubMed  CAS  Google Scholar 

  109. King DS, Dalsky GP, Clutter WE, et al. Effects of exercise and lack of exercise on insulin sensitivity and responsiveness. J Appl Physiol 1988; 64: 1942–1946.

    PubMed  CAS  Google Scholar 

  110. Ryan ED, O’Sullivan MJ, Skyler JS. Insulin action during pregnancy: studies with the euglycemic clamp technique. Diabetes 1985; 34: 380–389.

    PubMed  CAS  Google Scholar 

  111. Hjollund E, Pedersen O, Espersen T, Klebe JG. Impaired insulin receptor binding and postbinding defects of adipocytes from normal and diabetic pregnant women. Diabetes 1986; 35: 598–603.

    PubMed  CAS  Google Scholar 

  112. Ciaraldi TP, Kettel M, El-Roeiy A, et al. Mechanisms of cellular insulin resistance in human pregnancy. Am J Obstet Gynecol 1994; 170: 365–341.

    Google Scholar 

  113. Hollingsworth DR, Moore TR. Postprandial walking exercise in pregnant insulin dependent (type 1) diabetic women: reduction of plasma lipid levels but absence of a significant effect on glycemic control. Am J Obstet Gynecol 1987; 157: 1359–1363.

    PubMed  CAS  Google Scholar 

  114. Artal R,Platt LD, Sperling M, et al. Exercise in pregnancy I. Maternal cardiovascular and metabolic responses in normal pregnancy. Am J Obstet Gynecol 1981; 140: 123–127.

    Google Scholar 

  115. Young JC, Treadway JL. The effect of prior exercise on oral glucose tolerance in late gestational women. Eur J Appl Physiol Occup Physiol 1992; 64: 430–433.

    PubMed  CAS  Google Scholar 

  116. Lesser KB, Gruppuso PA, Terry RB, Carpenter MW. Exercise fails to improve postprandial glycemic excursion in women with gestational diabetes. J Matern Fet Med 1996; 5: 211–217.

    CAS  Google Scholar 

  117. Böttger I, Schlein EM, Faloona GR, et al. The effect of exercise on glucagon secretion. J Clin Endocrinol Metab 1972; 35: 117–125.

    PubMed  Google Scholar 

  118. Tuttle KR, Marker JC, Dalsky GP, et al. Glucagon, not insulin, may play a secondary role in defense against hypoglycemia during exercise. Am J Physiol 1988; 254 (Endocrinol Metab 17): E713–719.

    PubMed  CAS  Google Scholar 

  119. Wasserman DH, Spalding JA, Bracy D, et al. Exercise-induced rise in glucagon and ketogenesis during prolonged muscular work. Diabetes 1989; 38: 799–807.

    PubMed  CAS  Google Scholar 

  120. VanHelder WP, Casey K, Radomski MW. Regulation of growth hormone during exercise by oxygen demand and availability. Eur J Appl Physiol 1987; 56: 628–632.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carpenter, M.W. (1998). Exercise in Pregnancy: Effects on Cardiorespiratory Physiology and Metabolism. In: Cowett, R.M. (eds) Principles of Perinatal—Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1642-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1642-1_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7227-4

  • Online ISBN: 978-1-4612-1642-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics