Skip to main content
  • 465 Accesses

Abstract

Nutrition has long been recognized as an important component of good health for the parturient and her fetus. Recently attention has been focused on individual nutrients, vitamins, minerals, and trace elements. Certain minerals have always been recognized as important in the human diet. Sodium, iron, and iodine are known to be essential components of a healthful diet. Lately, recognition of other minerals and trace elements has led to our understanding of their contribution to pregnancy and fetal development. Minerals such as calcium, magnesium, zinc, lead, copper, fluoride, and selenium all make their own unique contribution to maternal and fetal health. All of the above possess unique characteristics of transport across the fetal placental unit. This discussion focuses on the role of these nutrients in the human with specific focus on their role in pregnancy and normal fetal development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sanchez-Castillo CP, Warrender TP, Whitehead TP, et al. An assessment of the sources of dietary salt in a British population. Clin Sci 1987; 72: 95–102.

    PubMed  CAS  Google Scholar 

  2. National Research Council. Drinking water and health. Report of the Safe Drinking Water Committee, Advisory Center on Toxicology, Assembly of Life Sciences. Washington, DC: National Academy Press, 1977.

    Google Scholar 

  3. National Research Council. Recommended dietary allowances. 10th ed. Washington, DC: National Academy Press, 1989: 250–260.

    Google Scholar 

  4. Abraham S, Carroll MD. Fats, cholesterol, and sodium intake in the diet of persons 1–74 years: United States. Advance Data No. 54. U.S. Department of Health, Education, and Welfare, Washington, DC, 1981.

    Google Scholar 

  5. Pennington JAT, Wilson DB, Newell RF, et al. Selected minerals in food surveys, 1974 to 1981/82. J Am Diet Assoc 1984; 84: 771–780.

    PubMed  CAS  Google Scholar 

  6. Page LB. Epidemiologic evidence on the etiology of human hypertension and its possible prevention. Am Heart J 1976; 91: 527–534.

    PubMed  CAS  Google Scholar 

  7. Page LB. Hypertension and atherosclerosis in primitive and acculturating societies. In: Hunt JC, ed. Hypertension update, vol. 1. Lyndhurst, NJ: Health Learning Systems, 1979: 1–12.

    Google Scholar 

  8. Gothberg G, Lundin S, Aurell M, et al. Responses to slow graded bleeding in salt-depleted rats. J Hypertens Suppl 1983; 2: 24–26.

    Google Scholar 

  9. Theunissen IM, Parer JT. Fluid and electrolytes in pregnancy. Clin Obstet Gynecol 1994; 37: 3–15.

    PubMed  CAS  Google Scholar 

  10. Fievet P, Fournier A, deBold A, et al. Atrial natriuretic factor in pregnancy-induced hypertension and pre-eclampsia: increased plasma concentrations possibly explaining these hypovolemic states with paradoxical hyporeninism. Am J Hypertens 1988; 1: 16–21.

    PubMed  CAS  Google Scholar 

  11. Lowe SO, Macdonald GJ, Brown MA. Acute and chronic regulation of atrial natriuretic peptide in human pregnancy: a longitudinal study. J Hypertens 1992; 10: 821–829.

    Google Scholar 

  12. Olsson K, Hossaini-Hilali J, Eriksson L. Atrial natriuretic responses to angiotensin II in pregnant conscious goats. Acta Physiol Scand 1992; 145: 385–394.

    PubMed  CAS  Google Scholar 

  13. Durr JA. Maternal fluid adaptation to pregnancy. In: Brace RA, Ross MG, Robillard JE, eds. Reproductive and perinatal medicine, vol. XI: Fetal and neonatal body fluids. Ithaca: Perinatology Press, 1989.

    Google Scholar 

  14. Davison JM. Renal disease. In: deSwiet M, ed. Medical disorders in obstetric practice. Oxford: Blackwell Scientific, 1989: 306–308.

    Google Scholar 

  15. Hytten FE, Leitch I. The physiology of human pregnancy. 2nd ed. Oxford: Blackwell Scientific, 1971.

    Google Scholar 

  16. Lind T. Maternal physiology. Washington DC: Council on Resident Education in Obstetrics and Gynecology, 1985.

    Google Scholar 

  17. Pitkin RM, Kaminetzky HA, Newton M, et al. Maternal nutrition: a selective review of clinical topics. Obstet Gynecol 1972; 40: 773–785.

    PubMed  CAS  Google Scholar 

  18. Sullivan CA, Martin JN. Sodium and pregnancy. Clin Obstet Gynecol 1994; 37: 558–573.

    PubMed  CAS  Google Scholar 

  19. Ehrlich EN, Nolten WE, Oparil S, et al. Mineralocorticoids in normal pregnancy. In: Lindheimer MD, Katz AI, Zuspan FP, eds. Hypertension in pregnancy. New York: Wiley, 1976: 189–191.

    Google Scholar 

  20. Lindheimer MD, Katz AI. Renal changes during pregnancy: their relevance to volume homeostasis. Clin Obstet Gynecol 1975; 2: 345–364.

    Google Scholar 

  21. Hatjis CG, Kofinas AD, Greelish JP, et al. Atrial natriuretic factor concentrations during pregnancy and in the postpartum period. Am J Perinatol 1992; 9: 275–278.

    PubMed  CAS  Google Scholar 

  22. Schrier RW. Pathogenesis of sodium and water retention in high-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy, II. N Engl J Med 1988; 319: 1127–1134.

    Google Scholar 

  23. Schrier RW, Briner VA. Peripheral arterial vasodilation hypothesis of sodium and water retention in pregnancy: implications for pathogenesis of preeclampsia-eclampsia. Obstet Gynecol 1991; 77: 632–639.

    PubMed  CAS  Google Scholar 

  24. Davison JM, Lindheimer MD. Volume homeostasis and osmoregulation in human pregnancy. Baillieres Clin Endocrinol Metab 1989; 3: 451–472.

    PubMed  CAS  Google Scholar 

  25. Gant NF, Daley GL, Chand S, et al. A study of angiotensin II pressor response throughout primigravid pregnancy. J Clin Invest 1973; 52: 2682–2689.

    PubMed  CAS  Google Scholar 

  26. Brown MA, Gallery EDM. Sodium excretion in human pregnancy: a role for arginine vasopressin. Am J Obstet Gynecol 1986; 154: 914–919.

    PubMed  CAS  Google Scholar 

  27. Fadnes HO, Øian P. Transcapillary fluid balance and plasma volume regulation: a review. Obstet Gynecol Sury 1989; 44: 769–773.

    CAS  Google Scholar 

  28. Huisman A, Aarnoudse JG. Increased second trimester hemoglobin concentration in pregnancies later complicated by hypertension and growth retardation. Acta Obstet Gynecol Scand 1986; 65: 605–608.

    PubMed  CAS  Google Scholar 

  29. Pearson JF. Fluid balance in severe preeclampsia. Br J Hosp Med 1992; 48: 47–51.

    PubMed  CAS  Google Scholar 

  30. Brown MA, Zammit VC, Lowe SA. Capillary permeability and extracellular fluid volumes in pregnancy-induced hypertension. Clin Sci 1989; 77: 599–604.

    PubMed  CAS  Google Scholar 

  31. Brown MA, Whitworth JA. The kidney in hypertensive pregnancies: victim and villain. Am J Kidney Dis 1992; 20: 427–442.

    PubMed  CAS  Google Scholar 

  32. Thomsen JK, Storm TL, Thamsborg G, et al. Atrial natriuretic peptide concentrations in preeclampsia. BMJ 1987; 294; 1508–1510.

    PubMed  CAS  Google Scholar 

  33. Kristensen CG, Nakagawa Y, Coe FL, et al. Effect of natriuretic factor in rat pregnancy. Am J Physiol 1986; 250: R589–594.

    PubMed  CAS  Google Scholar 

  34. Hirai N, Yanaihara T, Nakayama T, et al. Plasma levels of atrial natriuretic peptide during normal pregnancy complicated by hypertension. Am J Obstet Gynecol 1988; 159: 27–31.

    PubMed  CAS  Google Scholar 

  35. Fievet P, Fournier A, deBold A, et al. Atrial natriuretic factor in pregnancy-induced hypertension and pre-eclampsia: increased plasma concentrations possibly explaining these hypovolemic states with paradoxical hyporeninism. Am J Hypertens 1988; 1: 16–20.

    PubMed  CAS  Google Scholar 

  36. Steegers EAP, Eskes TKAB, Jongsma HW, et al. Dietary sodium restriction during pregnancy: a historical review. Eur J Obstet Gynecol Reprod Biol 1991; 40: 83–90.

    PubMed  CAS  Google Scholar 

  37. Chesley LC, Annitto JE, City J. A study of salt restriction and of fluid intake in prophylaxis against preeclampsia in patients with water retention. Am J Obstet Gynecol 1943; 45: 961–971.

    Google Scholar 

  38. Gray MJ, Munro AB, Sims EAH, et al. Regulation of sodium and total body water metabolism in pregnancy. Am J Obstet Gynecol 1964; 89: 760–765.

    PubMed  CAS  Google Scholar 

  39. Robinson M. Salt in pregnancy. Lancet 1958; 1: 178–181.

    PubMed  CAS  Google Scholar 

  40. Millar JA. Salt and pregnancy-induced hypertension. Lancet 1988; 2: 514.

    PubMed  CAS  Google Scholar 

  41. Palomaki JF, Lindheimer MD. Sodium depletion simulating deterioration in a toxemic pregnancy. N Engl J Med 1970; 282: 88–89.

    PubMed  CAS  Google Scholar 

  42. Repke JT. Calcium homeostasis in pregnancy. Clin Obstet Gynecol 1994; 37: 59–65.

    PubMed  CAS  Google Scholar 

  43. National Research Council. Recommended dietary allowances. 10th ed. Washington, DC: National Academy Press, 1989: 174–83.

    Google Scholar 

  44. Villar J, Belizân TM. Calcium during pregnancy. Clin Nutr 1986; 5: 55–62.

    Google Scholar 

  45. Chu JY, Margen S, Costa FM. Studies on calcium metabolism. II. Effects of low calcium and variable protein intake on human calcium metabolism. Am J Clin Nutr 1975; 28: 1028–1035.

    PubMed  CAS  Google Scholar 

  46. United States Department of Agriculture. Nationwide food consumption survey. Nutrient intakes: Individuals in 48 states. Year 1977–78. Report No. I-2. Consumer Nutrition Division. Human Nutrition Information Service. U.S. Department of Agriculture. Hyattsville, MD: 1984

    Google Scholar 

  47. United States Department of Agriculture. Nationwide food consumption survey: Continuing survey of food intakes by individuals. Women 19–50 years and children 1–5 years, 4 days, 1985. Report 85–4. Nutrition Monitoring Division, Human Nutrition Information Service. U.S. Department of Agriculture. Hyattsville, MD: 1987.

    Google Scholar 

  48. Block G, Dresser CM, Hartman AM, et al. Nutrient sources in the American diet: quantitative data from the NHANES II survey. I. Vitamins and minerals. Am J Epidemiol 1985; 122: 13–26.

    PubMed  CAS  Google Scholar 

  49. Heaney RP, Skillman TG. Calcium metabolism in normal human pregnancy. J Clin Endocrinol 1971; 33:661–670.

    CAS  Google Scholar 

  50. Care AD. The placental transfer of calcium. J Dev Physiol 1991; 15: 253–257.

    PubMed  CAS  Google Scholar 

  51. Tan CM, Raman A, Sinnathray TA. Serum ionic calcium levels during pregnancy. J Obstet Gynaecol Br Commonw 1972; 79: 694–697.

    PubMed  CAS  Google Scholar 

  52. Pitkin RM, Reynolds WA, Williams GA, et al. Calcium metabolism in normal pregnancy: a longitudinal study. Am J Obstet Gynecol 1979; 133: 781–790.

    PubMed  CAS  Google Scholar 

  53. Drake TS, Kaplan RA, Lewis TA. The physiologic hyperparathyroidism of pregnancy: Is it primary or secondary? Obstet Gynecol 1979; 53: 746–749.

    PubMed  CAS  Google Scholar 

  54. Pitkin RM, Gebhardt MP. Serum calcium concentrations in human pregnancy. Am J Obstet Gynecol 1977; 127: 775–778.

    PubMed  CAS  Google Scholar 

  55. Lund B, Selnes A. Plasma 1,25-dihydroxyvitamin D levels in pregnancy and lactation. Acta Endocrinol Copenh 1979; 53: 746–749.

    Google Scholar 

  56. Richards SR, Nelson DM, Zuspan P. Calcium levels in normal and hypertension and lactation. Am J Obstet Gynecol 1984; 149: 168–171.

    PubMed  CAS  Google Scholar 

  57. Gertner JM, Coustan DR, Kliger AS, et al. Pregnancy as a state of physiologic absorptive hypercalciuria. Am J Med 1986; 81: 451–456.

    PubMed  CAS  Google Scholar 

  58. Davis OK, Hawkins DS, Rubin LP, et al. Serum parathyroid hormone (PTH) in pregnant women determined by an immunoradiometric assay for intact PTH. J Clin Endocrinol Metab 1988; 67: 850–852.

    PubMed  CAS  Google Scholar 

  59. Frolich A, Rudnicki M, Fischer-Rasmussen W, et al. Serum concentrations of intact parathyroid hormone during late human pregnancy: a longitudinal study. Eur J Obstet Gynaecol Reprod Biol 1991; 42: 85–87.

    CAS  Google Scholar 

  60. Seki K, Makimura N, Mitsui C, et al. Calcium-regulating hormones and osteocalcin levels during pregnancy: a longitudinal study. Am J Obstet Gynecol 1991; 164: 1248–1252.

    PubMed  CAS  Google Scholar 

  61. Seely EW, Graves SW. Calcium homeostasis in normotensive and hypertensive pregnancy. Compr Ther 1993; 19: 124–128.

    PubMed  CAS  Google Scholar 

  62. Cushard WG, Creditor MA, Canterbury JM, et al. Physiologic hyperparathyroidism in pregnancy. J Clin Endocrinol 1972; 34: 767–771.

    CAS  Google Scholar 

  63. Van den Elzen HJ, Wladimiroff JW, Cohen Overbeek TE, et al. Calcium metabolism, calcium supplementation and hypertensive disorders of pregnancy. Eur J Obstet Gynaecol Reprod Biol 1995; 59: 5–16.

    Google Scholar 

  64. Pitkin RM. Calcium metabolism in pregnancy and the perinatal period: a review. Am J Obstet Gyneco11985; 151: 99–106.

    Google Scholar 

  65. Breslau NA, Zerwekh JE. Relationship of estrogen and pregnancy to calcium homeostasis in pseudohypoparathyroidism. J Clin Endocrinol Metab 1986; 62: 45–51.

    PubMed  CAS  Google Scholar 

  66. Cruikshank DP, Pitkin R, Reynolds WA, et al. Calcium regulating hormones and ions in amniotic fluid. Am J Obstet Gynecol 1980; 136: 621–625.

    PubMed  CAS  Google Scholar 

  67. Barlet JP, Davicco MJ. Parathyroid hormone related peptide. Reprod Nutr Dev 1990; 30: 639–651.

    PubMed  CAS  Google Scholar 

  68. Frank GB. The current view of the source of trigger calcium in the excitation concentration coupling in the vertebrate skeletal muscle. Biochem Pharmacol 1980; 29: 2399–2406.

    PubMed  CAS  Google Scholar 

  69. Belizân JM, Villar J. The relationship between calcium intake and edema-proteinuria and hypertension gestosis: an hypothesis. Am J Clin Nutr 1980; 33: 2202–2210.

    PubMed  Google Scholar 

  70. Neri LC, Mandel JS, Hewitt D. Relationship between mortality and water hardness in Canada. Lancet 1972; 1: 931–934.

    PubMed  CAS  Google Scholar 

  71. Marironi R, Koirtyohann SR, Pierce JO, et al. Calcium content of river water, trace element concentration in toenails, and blood pressure in village populations in New Guinea. Sci Total Environ 1976; 6: 41–53.

    Google Scholar 

  72. Langford HG, Watson RL. Electrolytes, environment, and blood pressure. Clin Sci Mol Med 1973; 45: 111S - 113S.

    Google Scholar 

  73. Kobayashi J. On the influence of NaCL, KCL, Na2SO4, and CaCO3 on the life and blood pressure of rats with calcium and magnesium deficiencies. Jpn J Hygiene 1968; 23: 106–110.

    Google Scholar 

  74. Itokawa Y, Tanaka C, Fujiwara M. Changes in body temperature and blood pressure in rats with calcium and magnesium deficiencies. J Appl Physiol 1974; 37: 835–839.

    PubMed  CAS  Google Scholar 

  75. Belizân JM, Pineda O, Sainz E, et al. Rise of blood pressure in calcium-deprived pregnant rats. Am J Obstet Gynecol 1981; 141: 163–169.

    PubMed  Google Scholar 

  76. Varner MW, Cruikshank DP, Pitkin RM. Calcium metabolism in the hypertensive mother, fetus, and newborn. Am J Obstet Gynecol 1983; 143: 762–765.

    Google Scholar 

  77. Van Overloop B, Treisser A, Coumaros G, et al. Decreased ionized calcium and increased parathyroid hormone in the serum of mild gestational hypertensive patients at the third trimester: a link between calcium metabolism and hypertension in pregnancy. Clin Exp Hypertens (B) 1992: B11: 233–247.

    Google Scholar 

  78. Sowers JR, Zemel MB, Bronsteen RE, et al. Erythrocyte cation metabolism in preeclampsia. Am J Obstet Gynecol 1989; 161: 441–445.

    PubMed  CAS  Google Scholar 

  79. Roelofsen JTM, Berkel GM, Uttendorfsky OT, et al. Urinary excretion of calcium and magnesium in normal and complicated pregnancies. Eur J Obstet Gynaecol Reprod Biol 1988; 27: 227–236.

    CAS  Google Scholar 

  80. Taufield PA, Ales KL, Resnick LM, et al. Hypocalciuria in preeclampsia. N Engl J Med 1987; 316: 715–718.

    PubMed  CAS  Google Scholar 

  81. Frenkel Y, Barkai G, Maschiach S, et al. Hypocalciuria of preeclampsia is independent of parathyroid hormone level. Obstet Gynecol 1991; 77: 689–691.

    PubMed  CAS  Google Scholar 

  82. August P, Marcaccio B, Gertner JM, et al. Abnormal 1,25dihydroxyvitamin D metabolism in preeclampsia. Am J Obstet Gynecol 1992; 166: 1295–1299.

    PubMed  CAS  Google Scholar 

  83. Seely EW, Wood RJ, Brown EM, et al. Lower serum ionized calcium and abnormal calciotropic hormone levels in preeclampsia. J Clin Endocrinol Metab 1992; 74: 1436–1440.

    Google Scholar 

  84. Ohara N, Yamasaki M, Morikawa H, et al. Dynamics on the calcium metabolism and calcium-regulating hormones in pregnancy-induced hypertension. Folia Endocrinol Jap 1986; 62: 882–896.

    CAS  Google Scholar 

  85. August P, Marcaccio B, Gertner JM, et al. Abnormal 1,25- dihydroxyvitamin D metabolism in preeclampsia. Am J Obstet Gynecol 1992; 166: 1295–1299.

    PubMed  CAS  Google Scholar 

  86. Sanchez-Ramos L, Jones DC, Cullen MT. Urinary calcium as an early marker for preeclampsia. Obstet Gynecol 1991; 77: 685–688.

    PubMed  CAS  Google Scholar 

  87. López-Jaramillo P, Terán E, Moncada S. Calcium supplementation prevents pregnancy-induced hypertension by increasing the production of vascular nitric oxide. Med Hypoth 1995; 45: 68–72.

    Google Scholar 

  88. Luckhoff A, Pohl U, Mulsch A, et al. Differential role of extra-and intracellular calcium in the release of EDRF and prostacyclin from culture endothelial cells. Br J Pharmacol 1988; 95: 189–196.

    PubMed  CAS  Google Scholar 

  89. Palmer RMJ, Moncada S. A novel citrulline forming enzyme implicated in the formation of nitric oxide by vascular endothelial cells. Biochem Biophys Res Commun 1989; 158: 348–352.

    PubMed  CAS  Google Scholar 

  90. Bucher HC, Guyatt GH, Cook RJ, et al. Effect of calcium supplementation on pregnancy-induced hypertension and preeclampsia: a meta-analysis of randomized controlled trials. JAMA 1996; 275: 1113–1117.

    PubMed  CAS  Google Scholar 

  91. Aikawa JK. Magnesium: its biologic significance. Boca Raton, FL: CRC Press, 1981.

    Google Scholar 

  92. Wester PO. Magnesium. Am J Clin Nutr 1987; 45: 1305–1312.

    Google Scholar 

  93. Garfinkel L, Garfinkel D. Magnesium regulation of the glycolic pathway and the enzymes involved. Magnesium 1985; 4: 60–72.

    PubMed  CAS  Google Scholar 

  94. Wacker WEC. Magnesium metabolism. N Engl J Med 1968; 278: 658–660.

    PubMed  CAS  Google Scholar 

  95. Lee MI, Todd HM, Bowe A. The effect of magnesium sulphate infusion on blood pressure and vascular responsiveness during pregnancy. Am J Obstet Gynecol 1984; 149: 705–708.

    PubMed  CAS  Google Scholar 

  96. Zofkova I, Kancheva RL. The relationship between magnesium and calciotropic hormones. Magnes Res 1995; 8: 77–84.

    PubMed  CAS  Google Scholar 

  97. Schwartz R, Apgar BJ, Wien EM. Apparent absorption and retention of Ca, Cu, Mg, Mn, and Zn from a diet containing bran. Am J Clin Nutr 1986; 43: 444–455.

    PubMed  CAS  Google Scholar 

  98. Hardwick LL, Jones MR, Brautbar N, et al. Magnesium absorption: mechanism and the influence of vitamin D, calcium, and phosphate. J Nutr 1991; 121: 13–23.

    PubMed  CAS  Google Scholar 

  99. Macy IG, Hunscher HA. An evaluation of maternal nitrogen and mineral needs during embryonic and infant development. Am J Obstet Gynec 1934; 27: 878–880.

    Google Scholar 

  100. National Research Council. Recommended dietary allowances. 10th ed. Washington, DC: National Academy Press, 1989: 187–194.

    Google Scholar 

  101. Morgan KJ, Stampley GL, Zabik ME, et al. Magnesium and calcium dietary intakes of the US population. J Am Coll Nutr 1985; 4: 546–550.

    Google Scholar 

  102. Lukacsi L, Littner F, Grimes E, et al. Magnesium content of human myometrium and placenta during various stages of gestation, and of different body fluids at term. Magnes Res 1993; 6: 47–52.

    PubMed  CAS  Google Scholar 

  103. Bardicef B, Bardicef O, Sorokin Y, et al. Extracellular and intracellular magnesium depletion in pregnancy and gestational diabetes. Am J Obstet Gynecol 1995; 172: 1009–1013.

    Google Scholar 

  104. Lim P, Jacob E, Dong S, et al. Values for tissue magnesium as a guide in detecting magnesium deficiency. J Clin Pathol 1969; 22: 417–421.

    PubMed  CAS  Google Scholar 

  105. Boston JL, Beauchene RE, Cruikshank DP. Erythrocyte and plasma magnesium during teenage pregnancy: relationship with blood pressure and pregnancy-induced hypertension. Obstet Gynecol 1989; 73: 169–174.

    PubMed  CAS  Google Scholar 

  106. Rosner F, Gorfien PC. Erythrocyte and plasma zinc and magnesium levels in health and disease. J Lab Clin Med 1968; 72: 213–219.

    PubMed  CAS  Google Scholar 

  107. Colussi G, Surian M, DeFerrari ME, et al. The changes in plasma diffusible levels and renal tubular handling of magnesium during pregnancy: a longitudinal study. Bone Miner 1987; 2: 311–319.

    PubMed  CAS  Google Scholar 

  108. Widdowson EM. Changes in body composition during growth. In: Davis JA, Dobbing J, eds. Scientific foundation of pediatrics. London: Heinemann Medical, 1981:330–342.

    Google Scholar 

  109. Greer FR. Calcium, phosphorous, magnesium, and the placenta. Acta Paediatr Suppl 1994; 405: 20–24.

    PubMed  CAS  Google Scholar 

  110. Hallak M, Berry SM, Madincea F, et al. Fetal serum and amniotic fluid magnesium concentrations with maternal treatment. Obstet Gynecol 1993; 81: 185–188.

    PubMed  CAS  Google Scholar 

  111. Shaw AJ, Mughal MZ, Maresh MJA, et al. Sodium-dependent magnesium transport across in situ perfused rat placenta. Am J Physiol 1991; 261: R369–372.

    PubMed  CAS  Google Scholar 

  112. Günther T, Vormann J, Höllriegl V. Effects of amiloride and furosemide on 28Mg transport into fetuses and maternal tissues of rats. Magnes Bull 1988; 10: 34–37.

    Google Scholar 

  113. Barri M, Abbas SK, Pickard DW, et al. Fetal magnesium homeostasis in the sheep. Exp Physiol 1990; 75: 681–688.

    PubMed  CAS  Google Scholar 

  114. Shaw AJ, Mughal MZ, Maresh MJA, et al. Effects of two synthetic parathyroid hormone-related protein fragments on maternofetal transfer of calcium and magnesium and release of cyclic AMP by the in-situ perfused rat placenta. J Endocrinol 1991; 129: 399–404.

    PubMed  CAS  Google Scholar 

  115. Petrie RH. Tocolysis using magnesium sulfate. Semin Perinatol 1981; 5: 266–273.

    PubMed  CAS  Google Scholar 

  116. Altura BM, Altura BT. Magnesium ions and the contraction of vascular smooth muscle; relationship to some vascular diseases. Fed Proc 1981; 40: 2672–2679.

    PubMed  CAS  Google Scholar 

  117. Altura BT, Altura BM. Interactions of Mg and K on cerebral vessels-aspects in view of stroke. Review of present status and new findings. Magnes 1984; 3: 195–211.

    CAS  Google Scholar 

  118. Smith LH. Disorders of magnesium metabolism. In: Wyngaarden LH, Smith JB, eds. Cecil textbook of medicine. Philadelphia, PA: WB Saunders, 1982.

    Google Scholar 

  119. Lamm CI, Norton KI, Murphy RJ, et al. Congenital rickets associated with magnesium sulphate infusion for tocolysis. J Pediatr 1988; 113: 1078–1082.

    PubMed  CAS  Google Scholar 

  120. Altura BM, Altura BT, Carella D. Magnesium deficiency induced spasm of umbilical vessels: relation to pre-eclampsia, hypertension, growth retardation. Science 1983; 221: 376–378.

    PubMed  CAS  Google Scholar 

  121. Altura BT, Bruit M, Bloom S, et al. Magnesium dietary intake modulates blood lipid levels and atherogenesis. Proc Natl Acad Sci USA 1990; 87: 1840–1844.

    PubMed  CAS  Google Scholar 

  122. Husain S, Birdsey T, Mughal Z, et al. Effect of diabetes mellitus on magnesium transport in rat placenta. Placenta 1992; 13: A24–28.

    Google Scholar 

  123. Giavini E, Broccia ML, Prati M. Congenital malformations in offspring of diabetic rats: experimental study on the influence of the diet composition and magnesium intake. Biol Neonate 1990; 57: 207–217.

    PubMed  CAS  Google Scholar 

  124. Skajaa K, Dørup I, Sandstrom B. Magnesium intake and status and pregnancy outcome in a Danish population. Br J Obstet Gynaecol 1991; 98: 919–928.

    PubMed  CAS  Google Scholar 

  125. Handwerker SM, Altura MT, Altura AM. Ionized serum magnesium and potassium levels in pregnant women with preeclampsia and eclampsia. J Reprod Med 1995; 40: 201–208.

    Google Scholar 

  126. Conradt A, Weidinger H, Algayer H. On the role of magnesium in fetal hypertrophy, pregnancy-induced hypertension and pre-eclampsia. Magnes Bull 1984; 2: 68–72.

    Google Scholar 

  127. Spätling L, Spätling G. Magnesium supplementation in pregnancy. A double-blind study. Br J Obstet Gynaecol 1988; 95: 120–125.

    PubMed  Google Scholar 

  128. Kovács L, Molnár BG, Huhn E, et al. Magnesium substitution in pregnancy: a prospective, randomized double-blind study. Geburtshilfe Frauenheilkd 1988; 48: 595–600.

    PubMed  Google Scholar 

  129. Sibai BM, Villar MA, Bray E. Magnesium supplementation during pregnancy: a double-blind randomized controlled clinical trial. Am J Obstet Gynecol 1989; 161: 115–119.

    PubMed  CAS  Google Scholar 

  130. Garland HO. New experimental data on the relationship between diabetes mellitus and magnesium. Magnes Res 1992; 5: 193–202.

    PubMed  CAS  Google Scholar 

  131. Minoumi F, Miodovnik M, Tsang RC, et al. Decreased maternal serum magnesium concentration and adverse fetal outcome in insulin-dependent diabetic women. Obstet Gynecol 1987; 70: 85–88.

    Google Scholar 

  132. Minoumi F, Miodovnik M, Tsang RC, et al. Decreased amniotic fluid magnesium concentration in diabetic pregnancy. Obstet Gynecol 1987; 69: 12–14.

    Google Scholar 

  133. Sandstead HH. The role of zinc in human health. In: Hemphill HH, ed. Trace substances in environmental health. Columbia, MO: University of Missouri Press, 1978: 37–59.

    Google Scholar 

  134. Bettiger WJ, O’Dell BL. A critical physiological role of zinc in the structure and function of biomembranes. Life Sci 1981; 28: 1425–1429.

    Google Scholar 

  135. Keusch G, Wilson C, Waksal S. Nutrition, host defense, and the lymphoid system. In: Gallin JI, Fauci AS, eds. Advances in host defense mechanisms. New York: Plenum, 1983: 275–359.

    Google Scholar 

  136. Rhodes D, Klug A. Zinc fingers. Sci Am 1993; 268 (2): 56–59.

    CAS  Google Scholar 

  137. Welsh SO, Marston RM. Zinc levels of the U.S. food supply. Food Technol 1980; 36: 70–76.

    Google Scholar 

  138. Solomons NW. Biologic availability of zinc in humans. Am J Clin Nutr 1982; 35: 1048–1075.

    PubMed  CAS  Google Scholar 

  139. Weismann K. Chelating drugs and zinc. Dan Med Bull 1986; 33: 208–211.

    PubMed  CAS  Google Scholar 

  140. Kuhnert BR, Kuhnert PM, Zarlingo Ti. Associations between placental cadmium and zinc and age and parity in pregnant women who smoke. Obstet Gynecol 1988; 71: 67–71.

    PubMed  CAS  Google Scholar 

  141. Wood RJ, Hansen DA. Effect of milk and lactose on zinc absorption in lactose-intolerant postmenopausal women. J Nutr 1988; 118: 982–986.

    PubMed  CAS  Google Scholar 

  142. Solomons NW, Jacob RA. Studies on the bioavailability of zinc in humans. IV. Effect of heme and nonheme iron on absorption of inorganic zinc. Am J Clin Nutr 1981;34:475–481.

    PubMed  CAS  Google Scholar 

  143. Cousins RJ. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 1985; 65: 238–309.

    PubMed  CAS  Google Scholar 

  144. Solomons NW, Cousins RJ. Zinc. In: Solomons NW, Rosenberg IH, eds. Absorption and malabsorption of mineral nutrients. New York: Alan R. Liss, 1984;125–197.

    Google Scholar 

  145. Solomons NW. Biologic availability of zinc in humans. Am J Clin Nutr 1982; 35: 1048–1075.

    PubMed  CAS  Google Scholar 

  146. Kilereich S, Christiansen C. Distribution of serum zinc between albumin and a2-macroglobulin in patients with different zinc metabolic disorders. Clin Chem Acta 1986; 154: 1–6.

    Google Scholar 

  147. Wester PO. Tissue zinc at autopsy-relation to medication with diuretics. Acta Med Scand 1980; 208: 269–271.

    PubMed  CAS  Google Scholar 

  148. National Research Council. Recommended dietary allowances. 10th ed. Washington, DC: National Academy Press, 1989; 205–213.

    Google Scholar 

  149. Chaube S, Nishimura H, Swinyard CA. Zinc and calcium in normal human embryos and fetuses. Arch Environ Health 1973; 26: 237–240.

    PubMed  CAS  Google Scholar 

  150. Swanson CA, King JC. Zinc utilization in pregnant and non-pregnant women fed controlled diets providing the zinc RDA. J Nutr 1982; 122: 697–707.

    Google Scholar 

  151. Solomons NW, Helitzer-Allen DL, Villar J. Zinc needs during pregnancy. Clin Nutr 1986; 5: 63–71.

    Google Scholar 

  152. Rösick U, Rösick E, Brätter P, et al. Determination of zinc in amniotic fluid in normal and high risk pregnancies. J Clin Chem Clin Biochem 1983; 21: 363–372.

    PubMed  Google Scholar 

  153. Apgar J. Zinc and reproduction. Annu Rev Nutr 1985; 5: 43–68.

    PubMed  CAS  Google Scholar 

  154. Lockitch G, Halstead AC. Pediatric nutrition. In: Soldin SJ, Rifai N, Hicks JMB, eds. Biochemical basis of pediatric disease. Washington, DC: American Association for Clinical Chemistry Press, 1995: 30–31.

    Google Scholar 

  155. Hambidge KM, Neldner KH, Walraven PA. Zinc, acrodermatitis enteropathica and congenital malformation. Lancet 1975; 1: 577–578.

    Google Scholar 

  156. Scholl TO, Hediger ML, Schall JI, et al. Low zinc intake during pregnancy: its association with preterm and very preterm delivery. Am J Epidemiol 1993; 137: 1115–1124.

    PubMed  CAS  Google Scholar 

  157. McMichael AJ, Dreosti IE, Gibson GT. Maternal zinc status and pregnancy outcome: A prospective study. In: Prasad AS, Dreosti IE, Hetzel BS, eds. Clinical applications of recent advances in zinc metabolism. New York: Alan R. Liss, 1982: 53–66.

    Google Scholar 

  158. Cherry FF, Sandstead HH, Rojas P, et al. Adolescent pregnancy: associations among body weight, zinc nutriture, and pregnancy outcome. Am J Clin Nutr 1989; 50: 945–954.

    PubMed  CAS  Google Scholar 

  159. Tamura T, Goldenberg RL, Freeberg LE, et al. Maternal serum folate and zinc concentrations and their relationships to pregnancy outcome. Am J Clin Nutr 1992; 56: 365–370.

    PubMed  CAS  Google Scholar 

  160. Mahomed K, James DK, Golding J, et al. Zinc supplementation during pregnancy: a double blind randomised controlled trial. Br Med J 1989;299(6703):826–830.

    CAS  Google Scholar 

  161. Garg HK, Singhal KC, Archad Z. A study of the effect of oral zinc supplementation during pregnancy on pregnancy outcome. Indian J Physiol Pharmacol 1993; 37: 276–284.

    PubMed  CAS  Google Scholar 

  162. Goldenberg RL, Tamura T, Neggers Y, et al. The effect of zinc supplementation on pregnancy outcome. JAMA 181. 1995; 274: 463–468.

    CAS  Google Scholar 

  163. Buamah PK, Russell M, Bates M, et al. Maternal zinc status: a determination of central nervous system 182. malformation. Br J Obstet Gynaecol 1984; 91: 788–790.

    PubMed  CAS  Google Scholar 

  164. Ghosh A, Fong LYY, Wan CW, et al. Zinc deficiency is not a cause for abortion, congenital abnormality, and small-for-gestational age infant in Chinese women. Br J 183. Obstet Gynaecol 1985; 92: 892–898.

    Google Scholar 

  165. Milunsky A, Morris JS, Jick H, et al. Maternal zinc and fetal neural tube defects. Teratology 1992; 46: 341–348.

    PubMed  CAS  Google Scholar 

  166. Kirksey A, Wachs TD, Yunis F, et al. Relation of maternal zinc nutriture to pregnancy outcome and infant development in an Egyptian village. Am J Clin Nutr 1994; 60: 782–792.

    Google Scholar 

  167. Bro S, Berendsten H, Norgaard J, et al. Serum zinc and copper concentrations in maternal and umbilical cord blood. Relation to course and outcome of pregnancy. Scand J Clin Lab Invest 1988; 48: 805–811.

    Google Scholar 

  168. Campbell-Brown M, Ward RJ, Haines AP, et al. Zinc and copper in Asian pregnancies-Is there evidence for a nutritional deficiency? Br J Obstet Gynaecol 1985; 92: 875–885.

    PubMed  CAS  Google Scholar 

  169. Vitieri FE. Iron deficiency: ending hidden hunger. 186. Proceedings of a Policy Conference on Micronutrient Malnutrition. WHO, UNICEF, World Bank, CIDACanada, USAID, FAO, UNDP, The Task force for Child 187. Survival and Development. Atlanta, GA, 1991.

    Google Scholar 

  170. Scholl TO, Hediger ML, Fischer RL, et al. Anemia vs iron 188. deficiency: increased risk of preterm delivery in a prospective study. Am J Clin Nutr 1992; 55: 985–988.

    PubMed  CAS  Google Scholar 

  171. Beard J. Iron deficiency: assessment during pregnancy and its importance in pregnant adolescents. Am J Clin Nutr 190. 1994; 59 (suppl): 502S - 510S.

    CAS  Google Scholar 

  172. Finch CA, Cook JC. Iron deficiency. Am J Clin Nutr 191. 1984; 39: 471–477.

    CAS  Google Scholar 

  173. Murphy SP, Calloway DH. Nutrient intakes of women in NHANES II emphasizing trace minerals, fiber, and 192. phytate. J Am Diet Assoc 1986; 86: 1366–1372.

    PubMed  CAS  Google Scholar 

  174. Craig WJ. Iron status in vegetarians. Am J Clin Nutr 193. 1994; 59: 12335–12375.

    Google Scholar 

  175. Bothwell TH. Overview and mechanisms of iron 194. regulation. Nutr Rev 1995; 53: 237–245.

    PubMed  CAS  Google Scholar 

  176. Cook JD, Dassenko SA, Lynch SR. Assessment of the role of nonheme-iron availability in iron balance. Am J Clin 195. Nutr 1991; 54: 717–722.

    CAS  Google Scholar 

  177. Hallberg L, Brune M, Erlandsson M, et al. Calcium effect of different amounts on nonheme and hemeiron absorption in humans. Am J Clin Nutr 1991; 53: 112–119.

    Google Scholar 

  178. Cook JD, Dassenko SA, Whittaker P. Calcium sup- 197. plementation: effect on iron absorption. Am J Clin Nutr 1991; 53: 106–111.

    PubMed  CAS  Google Scholar 

  179. Gillooly M, Bothwell TH, Torrance JD, et al. The effects of organic acids, phytates, and polyphenols on the absorption of iron from vegetables. Br J Nutr 1983; 49: 331–342.

    PubMed  CAS  Google Scholar 

  180. Bothwell TH, Charlton RW, Cook JD, et al. Iron metabolism in man. Oxford: Blackwell Scientific, 1979.

    Google Scholar 

  181. National Research Council. Recommended dietary allowances. 10th ed. Washington, DC: National Academy Press, 1989: 443–453.

    Google Scholar 

  182. Hallberg L, Hogdahl AM, Nilsson L, et al. Menstrual blood loss-a population study. Variation at different ages and attempts to define normality. Acta Obstet Gynecol Scand 1966; 45: 320–351.

    PubMed  CAS  Google Scholar 

  183. National Research Council. Nutrient adequacy: assessment using food consumption surveys. Report of the Subcommittee on Criteria for Dietary Evaluation, Coordinating Committee on Evaluation of Food Consumption Surveys, Food and Nutrition Board, Commission on Life Sciences. Washington, DC: National Academy Press, 1986.

    Google Scholar 

  184. Expert Scientific Working Group. Summary of a report on assessment of the iron nutritional status of the United States population. Am J Clin Nutr 1994; 60: 117–121.

    Google Scholar 

  185. Institute of Medicine, Food and Nutrition Board, Committee on Nutritional Status during Pregnancy and Lactation. Nutrition during pregnancy, Part II: Nutrient supplements. Washington, DC: National Academy Press, 1990.

    Google Scholar 

  186. Carriaga MR, Skikne BS, Finley B, et al. Serum transferrin receptor for the detection of iron deficiency in pregnancy. Am J Clin Nutr 1991; 54: 1077–1081.

    PubMed  CAS  Google Scholar 

  187. Wada L, King JC. Trace element nutrition during pregnancy. Clin Obstet Gynecol 1994; 37: 574–586.

    PubMed  CAS  Google Scholar 

  188. Vitieri FE, Torun B. Anaemia and physical work capacity. Clin Haematol 1974; 3: 609–626.

    Google Scholar 

  189. Dallman PR. Iron deficiency and the immune response. Am J Clin Nutr 1987; 46: 329–334.

    PubMed  CAS  Google Scholar 

  190. Lozoff B, Brittenham GM. Behavioral aspects of iron deficiency. Prog Haematol 1986; 14: 23–53.

    CAS  Google Scholar 

  191. Hallberg L. Iron balance in pregnancy. In: Berger H, ed. Vitamins and mineral in pregnancy and lactation. New York: Raven Press, 1988: 115–126.

    Google Scholar 

  192. Schwartz WJ, Thurnau GR. Iron deficiency anemia in pregnancy Clin Obstet Gynecol 1995; 38: 443–454.

    Google Scholar 

  193. Harris ED. New insights into placental iron transport. Nutr Rev 1992; 50: 329–337.

    PubMed  CAS  Google Scholar 

  194. Vanderpuye OA, Kelley LK, Smith CH. Transferrin receptors in the basal plasma membrane of the human placental syncytiotrophoblast. Placenta 1986; 7: 391–403.

    PubMed  CAS  Google Scholar 

  195. Contractor SF, Eaton BM. Role of transferrin in iron transport between maternal and fetal circulation of perfused lobule of human placenta. Cell Biochem Funct 1986; 4: 69–74.

    PubMed  CAS  Google Scholar 

  196. van Dijk JP. Regulatory aspects of placental iron transfer: a comparative study. Placenta 1988; 9: 215–226.

    PubMed  Google Scholar 

  197. Dumartin B, Canivenc R. Placental iron transfer regulation in the haemophagous region of the badger placenta: ultrastructural localization of ferritin in trophoblast and endothelial cells. Anat Embryol 1992; 185: 175–179

    PubMed  CAS  Google Scholar 

  198. Puolakka J. Serum ferritin as a measure of iron stores during pregnancy. Clin Haematol 1985; 14: 613–628.

    Google Scholar 

  199. Milman N, Agger AO, Nielson OJ. Iron status markers and serum erythropoietin in 120 mothers and newborn infants: effect of iron supplementation in normal pregnancy. Acta Obstet Gynecol Scand 1994; 73: 200–204.

    PubMed  CAS  Google Scholar 

  200. Centers for Disease Control. CDC criteria for anemia in children and childbearing aged women. MMWR 1989; 38: 400–404.

    Google Scholar 

  201. Puolakka J, Janne O, Pakarinen A, et al. Serum ferritin as a measure of iron stores during and after normal pregnancy with and without iron supplements. Acta Obstet Gynecol Scand 1980; 95: 53–56.

    CAS  Google Scholar 

  202. Farthing MJG. Iron and immunity. Acta Paediatr Scand Suppl 1989; 361: 44–52.

    PubMed  CAS  Google Scholar 

  203. United States Preventive Services Task Force. Routine iron supplementation during pregnancy. JAMA 1993; 270: 2848–2854.

    Google Scholar 

  204. Macgregor MW. Maternal anemia as a factor in prematurity and perinatal mortality. Scot Med J 1963; 8: 134–140.

    Google Scholar 

  205. Reinhardt MC. Maternal anemia in Abidjan: its influence on placenta and newborns. Hely Pediatr Acta 1978; 33 (suppl): 43–63.

    Google Scholar 

  206. Bhargava M, Kumar R, Iyer PU, et al. Effect of maternal anemia and iron depletion on foetal stores, birthweight, and gestation. Acta Paediatr Scand 1989; 78: 321–322.

    PubMed  CAS  Google Scholar 

  207. Brabin BJ, Ginny M, Sapau J, et al. Consequences of maternal anemia on outcome of pregnancy in a malaria endemic area in Papua New Guinea. Ann Trop Med Parasitol 1990; 84: 11–24.

    PubMed  CAS  Google Scholar 

  208. Lister UG, Rossiter CE, Chong H. Perinatal mortality. Br J Obstet Gynaecol 1985; 92 (suppl): 86–99.

    Google Scholar 

  209. Klein L. Premature birth and maternal prenatal anemia. Am J Obstet Gynecol 1966; 83: 588–590.

    Google Scholar 

  210. Murphy JF, O’Riordan J, Newcombe RG, et al. Relation of haemoglobin levels in first and second trimesters to outcome of pregnancy. Lancet 1986; 1: 992–994.

    PubMed  CAS  Google Scholar 

  211. Garn SM, Ridela SA, Petzoid AS, et al. Maternal hematologic levels and pregnancy outcomes. Semin Perinatol 1981; 5: 155–162.

    PubMed  CAS  Google Scholar 

  212. Lieberman E, Ryan KJ, Monson RR, et al. Association of maternal hematocrit with premature labor. Am J Obstet Gynecol 1988; 159: 107–114.

    PubMed  CAS  Google Scholar 

  213. Knotterus JA, Delgado LR, Knipschild PG, et al. Haematologic parameters and pregnancy outcome: a prospective cohort study in the third trimester. J Clin Epidemiol 1990; 43: 461–466.

    Google Scholar 

  214. Lu ZM, Goldenberg RL, Cliver SP, et al. The relationship between maternal hematocrit and pregnancy outcome. Obstet Gynecol 1991; 77: 190–194.

    PubMed  CAS  Google Scholar 

  215. Klebanoff MA, Shiouo PH, Berendes HW, et al. Facts and artifacts about anemia and preterm delivery. JAMA 1989; 262: 511–515.

    PubMed  CAS  Google Scholar 

  216. Klebanoff MA, Shiouo PH, Selby JV, et al. Anemia and spontaneous preterm birth. Am J Obstet Gynecol 1991; 164: 59–63.

    PubMed  CAS  Google Scholar 

  217. Taylor DJ, Lind T. Haematologic changes during normal pregnancy: iron induced macrocytosis. Br J Obstet Gynaecol 1976; 83: 760–767.

    PubMed  CAS  Google Scholar 

  218. Kullander S, Kallen B. A prospective study of drugs and pregnancy. Acta Obstet Gynecol Scand 1976; 55: 287–295.

    PubMed  CAS  Google Scholar 

  219. Romslo I, Haram K, Sagen N, et al. Iron requirement in normal pregnancy as assessed by serum ferritin, serum transferrin saturation, and erythrocyte protoporphyrin determinations. Br J Obstet Gynaecol 1983; 90: 101–107.

    PubMed  CAS  Google Scholar 

  220. Simmons WK, Cook JD, Bingham KC, et al. Evaluation of a gastric delivery system for iron supplementation in pregnancy. Am J Clin Nutr 1993; 58: 622–626.

    PubMed  CAS  Google Scholar 

  221. Thomson JK, Prien-Larsen JC, Devantier A, et al. Low-dose iron supplementation does not cover the need for iron during pregnancy. Acta Obstet Gynecol Scand 1993; 72: 93–98.

    Google Scholar 

  222. Paintin DB, Thomson AM, Hytten FE. Iron and the haemoglobin level in pregnancy. Br J Obstet Gynaecol 1966; 73: 181–190.

    CAS  Google Scholar 

  223. Willoughby MLN. An investigation of folic acid requirements in pregnancy. Br J Haematol 1967; 13: 503–509.

    Google Scholar 

  224. Primbs K. Iron treatment during pregnancy-a comparative study. Geburtshilfe Frauenheilkd 1973; 33: 552–559.

    Google Scholar 

  225. Fleming AF, Martin JD, Hahnel R, et al. Effects of iron and folic acid antenatal supplements on maternal hematology and fetal well-being. Med J Aust 1974; 2: 429–436.

    PubMed  CAS  Google Scholar 

  226. Hemminki E, Rimpela U. A randomized comparison of routine versus selective iron supplementation during pregnancy. J Am Coll Nutr 1991; 10:3–10.

    PubMed  CAS  Google Scholar 

  227. Institute of Medicine. Iron deficiency anemia: Recommended guidelines for prevention, detection, and management among U.S. children and women of childbearing age. Washington, DC: National Academy Press, 1993.

    Google Scholar 

  228. Scholl TO, Hediger ML. Anemia and iron-deficiency anemia: compilation of data on pregnancy outcome. Am J Clin Nutr 1994; 59 (suppl): 492S - 501S.

    PubMed  CAS  Google Scholar 

  229. Schultink W, Gross R, Gliwitzki M, et al. Effect of daily vs. twice weekly iron supplementation in Indonesian preschool children with low iron status. Am J Clin Nutr 1991; 53: 112–119.

    Google Scholar 

  230. Centers for Disease Control. Preventing lead poisoning in young children: a statement by the Centers for Disease Control. U.S. Dept. of Health and Human Services, 992230, 1985: 252–255.

    Google Scholar 

  231. Needleman HL. Lead at low dose and the behavior of children. Neurotoxicology 1983; 4: 121–123.

    PubMed  CAS  Google Scholar 

  232. Schwartz J, Otto D. Blood lead, hearing thresholds, and neurobehavioral development in children and youth. Arch Environ Health 1987; 42: 153–160.

    PubMed  CAS  Google Scholar 

  233. Yule W, Rutter M. Effect of lead on children’s behavior and cognitive performance: a critical review. In: Mahaffey KN, ed. Dietary and environmental lead: human health effects. Amsterdam: Elsevier Science, 1985.

    Google Scholar 

  234. Winneke G, Collet W, Lilienthal H. The effects of lead in laboratory animals and environmentally-exposed children. Toxicology 1988; 49: 219–298.

    Google Scholar 

  235. Morrow PE, Beiter H, Amato F, et al. Pulmonary retention of lead: an experimental study in man. Environ Res 1980; 21: 373–384.

    PubMed  CAS  Google Scholar 

  236. Gross SD. Human oral and inhalation exposures to lead: summary of Kehoe balance experiments. J Toxicol Environ Health 1981; 8: 333–377.

    PubMed  CAS  Google Scholar 

  237. Baghurst PA, McMichael A, Vimpani GV, et al. Determinants of blood lead concentration of pregnant women living in Port Pirie and surrounding areas. Med J Aust 1987; 146: 69–73.

    PubMed  CAS  Google Scholar 

  238. DeSilva PE. Determination of lead in plasma and studies on its relationship to lead in erythrocytes. Br J Int Med 1981; 38: 209–217.

    CAS  Google Scholar 

  239. Klassen CD. Heavy metal and heavy metal antagonists. In: Gilman AG, Rall TW, Nies AS, eds. The pharmacological basis of therapeutics. New York: Pergamon Press, 1990: 1592–1598.

    Google Scholar 

  240. Mushak P. Biologic monitoring of lead exposure in children: Overview of selective biokinetics and toxicology issues. In: Smith MA, Grant LD, Sors AZ, eds. Lead exposure in child development. Boston: Kluwer Academic, 1989: 72–74.

    Google Scholar 

  241. Cavalleri A, Minoia C, Pozzoli L. Lead in red blood cells and in plasma of pregnant women and their offspring. Environ Res 1978; 17: 403–408.

    PubMed  CAS  Google Scholar 

  242. Goyer RA. Transplacental transport of lead. Environ Health Perspect 1990; 89: 101–105.

    PubMed  CAS  Google Scholar 

  243. Rabinowitz MB, Needleman HL. Temporal trends in the lead concentrations of umbilical cord blood. Science 1982; 216: 1429–1431.

    PubMed  CAS  Google Scholar 

  244. Mayer-Poken O, Denkhaus W, Konietzko H. Lead content of fetal tissues after maternal intoxication. Arch Toxicol 1986; 58: 203–204.

    Google Scholar 

  245. Alexander FW, Delves HT. Blood lead levels during pregnancy. Int Arch Occup Environ Health 1981; 48: 35–39.

    PubMed  CAS  Google Scholar 

  246. Thompson GN, Robertson EF, Fitzgerald S. Lead mobilization during pregnancy. Med J Aust 1985; 143: 131–139.

    Google Scholar 

  247. Tenenkim M. Poisoning in pregnancy. In: Koren G, ed. Maternal fetal toxicology: a clinician’s guide. New York: Marcel Dekker, 1990: 80–83.

    Google Scholar 

  248. Krigman MR, Mushak P, Bouldin TW. An appraisal of rodent models of lead encephalopathy. In: Roizin L, Sheraki H, Grcevic N, eds. Neurotoxicology. New York: Raven Press, 1997: 299–302.

    Google Scholar 

  249. Holtzman D, DeVries C, Nguyan H, et al. Maturation of resistance to lead encephalopathy: cellular and subcellular mechanisms. Neurotoxicology 1984; 5: 167–182.

    Google Scholar 

  250. McCauley PT, Bull RT, Tonti AP, et al. The effects of prenatal and postnatal lead exposure on neonatal synaptogenesis in rat cerebral cortex. J Toxicol Environ Health 1982; 10: 639–651.

    PubMed  CAS  Google Scholar 

  251. Regan CM, Cookman GR, Keane GT. The effects of chronic low-level lead exposure on the early structuring of the central nervous system. In: Smith MA, Grant LD, Sors A, eds. Lead exposure and child development: an international assessment. Boston: Kluwer Academic, 1989: 100–103.

    Google Scholar 

  252. Thomas JH, Gillham B. Wills’ biochemical basis of medicine. 2nd ed. London: Wright, 1989.

    Google Scholar 

  253. Gilbert SG, Rice DC. Low-level lifetime lead exposure produces behavioral toxicity (spatial discrimination reversal) in adult monkeys. Toxicol Appl Pharmacol 1987; 91: 484–490.

    PubMed  CAS  Google Scholar 

  254. Cookman GR, Hemmens SE, Keane F, et al. Chronic low level lead exposure precociously induces rat glial development in vitro and in vivo. Neurosci Lett 1988; 86: 33–37.

    PubMed  CAS  Google Scholar 

  255. Emhart C, Morrow-Tlucak M, Wolf A, et al. Low level lead exposure in the prenatal and early preschool periods: intelligence prior to school entry. Neurotoxicol Teratol 1989; 11: 161–170.

    Google Scholar 

  256. Cooney G, Bell A, McBride W, et al. Neurobehavioral consequences of prenatal low level exposures to lead. Dev Med Child Neurol 1989; 11: 95–104.

    CAS  Google Scholar 

  257. Baghurst P, McMichael A, Wigg N, et al. Environmental exposure to lead and children’s intelligence at age of seven years. The Port Pirie cohort study. N Engl J Med 1992; 327: 1279–1284.

    PubMed  CAS  Google Scholar 

  258. Bellinger D, Stiles K, Needleman H. Low-level lead exposure, intelligence, and academic achievement: a longterm follow-up study. Pediatrics 1992; 90: 855–861.

    PubMed  CAS  Google Scholar 

  259. Dietrich K, Berger O, Succop P, et al. The developmental consequences of low to moderate prenatal and postnatal lead exposure: intellectual attainment in the Cincinnati Lead Study cohort following school entry. Neurotoxicol Teratol 1993; 15: 37–44.

    PubMed  CAS  Google Scholar 

  260. Wasserman G, Graziano J, Factor-Litvak P, et al. Consequences of lead exposure and iron supplementation on childhood development at age 4 years. Neurotoxicol Teratol 1994; 16: 233–240.

    PubMed  CAS  Google Scholar 

  261. Dietrich K, Succop P, Berger O, et al. Lead exposure and the cognitive development of urban preschool children: the Cincinnati Lead Study cohort at age 4 years. Neurotoxicol Teratol 1991; 13: 203–211.

    PubMed  CAS  Google Scholar 

  262. Dietrich K, Succop P, Berger O, et al. Lead exposure and the central auditory processing abilities and cognitive development of urban children: the Cincinnati Lead Study cohort at age 5 years. Neurotoxicol Teratol 1992; 14: 51–56.

    PubMed  CAS  Google Scholar 

  263. World Health Organization. Environmental health criteria on inorganic lead. Geneva: WHO, 1995.

    Google Scholar 

  264. Schwartz J. Low-level lead exposure and children’s IQ: a meta-analysis and search for a threshold. Environ Res 1994; 65: 42–55.

    PubMed  CAS  Google Scholar 

  265. Needleman H, Rabinowitz M, Leviton A, et al. The relationship between prenatal exposure to lead and congenital anomalies. JAMA 1984; 251: 2956–2959.

    PubMed  CAS  Google Scholar 

  266. Emhart C, Wolf A, Kennard M, et al. Intrauterine exposure to low levels of lead: the status of the neonate. Arch Environ Health 1986; 41: 287–291.

    Google Scholar 

  267. McMichael A, Vimpani G, Robertson E, et al. The Port Pirie cohort study: maternal blood lead and pregnancy outcome. J Epidemiol Commun Health 1986; 40: 18–25.

    CAS  Google Scholar 

  268. Levine F, Muenke M. VACTERL association with high prenatal lead exposure: similarities to animal models of lead teratogenicity. Pediatrics 1991; 87: 390–392.

    PubMed  CAS  Google Scholar 

  269. Aschengrau A, Zierler S, Cohen A. Quality of community drinking water and the occurrence of late adverse pregnancy outcomes. Arch Environ Health 1993; 48: 105–113.

    PubMed  CAS  Google Scholar 

  270. Fahim MS, Fahim Z, Hall OG. Effects of subtoxic lead levels on pregnant women in the State of Missouri. Res Commun Chem Pathol Pharmacol 1976; 13: 309–331.

    PubMed  CAS  Google Scholar 

  271. Angell NF, Lavery JP. The relationship of blood lead levels to obstetric outcome. Am J Obstet Gynecol 1982; 142: 40–46.

    PubMed  CAS  Google Scholar 

  272. McMichael AJ, Vimpani GV, Robertson EF, et al. The Port Pirie cohort study: maternal blood lead and pregnancy outcome. J Epidemiol Community Health 1986; 40: 18–25.

    PubMed  CAS  Google Scholar 

  273. Moore MR, Goldberg A, Pocock SJ, et al. Some studies of maternal and infant lead exposure in Glasgow. Scott Med J 1982; 27: 113–122.

    PubMed  CAS  Google Scholar 

  274. Factor-Litvak P, Graziano JH, Kline JK, et al. A prospective study of birthweight and length of gestation in a population surrounding a lead smelter in Kosovo, Yugoslavia. Int J Epidemiol 1991; 3: 722–728.

    Google Scholar 

  275. Ward NI, Watson R, Bryce-Smith D. Placental element levels in relation to fetal development for obstetrically `normal’ births: a study of 37 elements. Evidence for effects of cadmium, lead, and zinc on fetal growth, and for smoking as a source of cadmium. Int J Biosoc Res 1987; 9: 63–81.

    Google Scholar 

  276. Dietrich KN, Krafft KM, Bornschein RL, et al. Low-level fetal lead exposure effect on neurobehavioral development in early infancy. Pediatrics 1987; 80: 721–730.

    PubMed  CAS  Google Scholar 

  277. Bogden JD, Thind IS, Louria DB, et al. Maternal and cord blood metal concentrations and low birth weight-a case control study. Am J Clin Nutr 1978; 31: 1181–1187.

    PubMed  CAS  Google Scholar 

  278. Bornschein RL, Grote J, Mitchell T, et al. Effects of prenatal lead exposure on infant size at birth. In: Smith MA, Grante LD, Sors AI, eds. Lead exposure and child development: an international development. Lancaster, UK: Kluwer, 1988: 307–319.

    Google Scholar 

  279. Monaco AP, Chelly J. Menkes and Wilson diseases. Adv Genet 1995; 33: 233–253.

    PubMed  CAS  Google Scholar 

  280. Solomons NW. Biochemical, metabolic, and clinical role of copper in human nutrition. J Am Coll Nutr 1985; 4: 83–105.

    PubMed  CAS  Google Scholar 

  281. Evans GW. Copper homeostasis in the mammalian system. Physiol Rev 1973; 53: 535–570.

    PubMed  CAS  Google Scholar 

  282. Turnlund JR, Keyes WR, Anderson HL, et al. Copper absorption and retention in young men at three levels of dietary copper using stable 65Cu. Am J Clin Nutr 1989; 49: 870–878.

    PubMed  CAS  Google Scholar 

  283. Jacob RA, Skala JH, Omaye ST, et al. Effect of varying ascorbic acid intakes on copper absorption and ceruloplasmin levels of young men. J Nutr 1987; 117: 2109 2115.

    Google Scholar 

  284. Festa MD, Anderson HL, Dowdy RP, et al. Effect of zinc intake on copper excretion and retention in men. Am J Clin Nutr 1985; 41: 285–292.

    PubMed  CAS  Google Scholar 

  285. Delves HT. The microdetermination of copper in plasma protein fraction. Clin Chem Acta 1976; 71: 495–500.

    CAS  Google Scholar 

  286. Johnson NC. Study of copper and zinc metabolism during pregnancy. Proc Soc Exp Biol Med 1961; 108: 518–519.

    PubMed  CAS  Google Scholar 

  287. Dancis A, Yuan DS, Haile D, et al. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 1994; 76: 393–402.

    PubMed  CAS  Google Scholar 

  288. Lewis KO. The nature of the copper complexed in the bile and their relationship to the absorption and excretion of copper in normal subjects and Wilson’s disease. Gut 1973; 14: 221–232.

    PubMed  CAS  Google Scholar 

  289. Klevay LM, Reck RA, Jacob GM, et al. The human requirement for copper. I. Healthy men fed conventional American diets. Am J Clin Nutr 1980; 33: 45–50.

    PubMed  CAS  Google Scholar 

  290. Shaw JCL. Copper deficiency and non-accidental injury. Arch Dis Child 1988; 63: 448–455.

    PubMed  CAS  Google Scholar 

  291. Menkes JH. Kinky hair disease: twenty-five years later. Brain Dev 1988; 10: 77–79.

    PubMed  CAS  Google Scholar 

  292. Brewer GJ, Yuzbasiyan-Gurkan V. Wilson disease: an update, with emphasis on new approaches to treatment. Dig Dis 1989; 7: 178–193.

    PubMed  CAS  Google Scholar 

  293. Beck J, Enders J, Schliephacke M, et al. X; 1 translocation in a female Menkes patient: characterization by fluorescence in situ hybridization. Clin Genet 1994; 46: 295–298.

    PubMed  CAS  Google Scholar 

  294. Bowcock AM, Tomfohrede J, Weissenbach J, et al. Refining the position of Wilson disease by linkage disequilibrium with polymorphic microsatellites. Am J Hum Genet 1994; 54: 79–87.

    PubMed  CAS  Google Scholar 

  295. Davies NT, Williams RB. The effect of pregnancy on the uptake and distribution of copper in the rat. Proc Nutr Soc 1976; 35: 4A - 5A.

    PubMed  CAS  Google Scholar 

  296. Allen LH. Trace minerals and outcome of human pregnancy. Clin Nutr 1986; 5: 72–77.

    Google Scholar 

  297. Damsgaard E, Horn N, Heydorn K. Trace elements in the placentas of normal foetuses and male foetuses with Menkes disease determined by neutron activation analysis. In: Bratter P, Schramel P, eds. Trace element-analytical chemistry in medicine and biology, vol. 2. New York: Walter de Gruyter, 1983: 499–506.

    Google Scholar 

  298. Shaw JCL. Trace elements in the fetus and young infant. II. Copper, manganese, selenium, and chromium. Am J Dis Child 1980; 134: 74–81.

    Google Scholar 

  299. Hall GA, Howell J. The effect of copper deficiency on reproduction in the female rat. Br J Nutr 1969; 23: 41–47.

    PubMed  CAS  Google Scholar 

  300. Morton MS, Elwood PC, Abernathy M. Trace elements in water and congenital malformation of the central nervous system in South Wales. Br J Prey Soc Med 1976; 30: 36–39.

    CAS  Google Scholar 

  301. Vir SC, Love AHG, Thompson W. Serum and hair concentrations of copper during pregnancy. Am J Clin Nutr 1981; 34: 2382–2388.

    PubMed  CAS  Google Scholar 

  302. Hodge HC, Smith FA. Minerals: fluorine and dental caries. In: Gould RF, ed. Dietary chemicals vs. dental caries. Advances in Chemistry Series No. 94. Washington, DC: American Chemical Society, 1970: 93–115.

    Google Scholar 

  303. Milne DB, Schwartz K. Effect of different fluorine compounds on growth and bone fluoride levels in rats. In: Hoekstra WG, Suttie JW, Ganther HE, et al., eds. Trace element metabolism in animals Baltimore: University Park Press, 1974; 710–714.

    Google Scholar 

  304. Messer HH, Armstrong WD, Singer L. Influence of fluoride intake on reproduction in mice. J Nutr 1973; 103: 1319–1326.

    PubMed  CAS  Google Scholar 

  305. Weber CW, Reid BL. Effect of low-fluoride diets fed to mice for six generations. In: Hoekstra WG, Suttie JW, Ganther HE, et al., eds. Trace element metabolism in animals. Baltimore: University Park Press, 1974: 707–327.

    Google Scholar 

  306. Tao S, Suttie JW. Evidence for a lack of an effect of J Obstet Gynecol Reprod Biol 1986; 21: 213–218.

    Google Scholar 

  307. Burt BA. The epidemiologic basis for water fluoridation in the prevention of dental caries. J Public Health Policy 1982; 3: 391–407.

    PubMed  CAS  Google Scholar 

  308. Singer L, Ophaug RH, Harland BF. Fluoride intake of young male adults in the United States. Am J Clin Nutr 1983; 33: 428–332.

    Google Scholar 

  309. National Research Council. Recommended dietary allowances. 10th ed. Washington, DC: National Academy Press, 1989: 235–240.

    Google Scholar 

  310. Full CA, Parkins FM. Effect of cooking vessel composition on fluoride. J Dent Res 1975; 54: 192–195.

    PubMed  CAS  Google Scholar 

  311. Cremer H-D, Büttner W. Absorption of fluorides. In: Prenatal fluorides-value of waterborne fluorides during Fluoride and human health. Geneva: World Health pregnancy. J Am Dent Assoc 1964; 69: 291–294.

    Google Scholar 

  312. Whitford GM, Pashley DH. Fluoride absorption: the to six years old in two Oregon communities (Corvallis influence of gastric acidity. Calcif Tissue Int 1984; 58: 2058–2065.

    Google Scholar 

  313. Whitford GM. The metabolism and toxicity of fluoride. Monographs in oral science 13. Basel: Karger, 1989.

    Google Scholar 

  314. Whitford GM, Reynolds KE, Pashley DH. Acute fluoride toxicity: influence of metabolic alkalosis. Toxicol Appl Pharmacol 1979; 50: 31–39.

    PubMed  CAS  Google Scholar 

  315. Whitford GM. Intake and metabolism of fluoride. Adv fluoridation on dental caries. Public Health Rep 1967;82: Dent Res 1994; 8: 5–14.

    Google Scholar 

  316. Council on Dental Therapeutics. Fluoride compounds. In: Accepted dental therapeutics, 39th ed. Chicago: American Dental Association, 1982: 344–368.

    Google Scholar 

  317. Fassman DK. Prenatal fluoridation. NY State Dent J 1993; 59: 47–51.

    CAS  Google Scholar 

  318. Gedalia I, Brzezinski A, Bercovici B, et al. transfer of fluorine in the human fetus. Proc Soc Exp Biol Med 1961; 106: 147–149.

    PubMed  CAS  Google Scholar 

  319. Bawden JW, Wolkoff AS, Flowers CE. Placental transfer of F-18 in sheep. J Dent Res 1964; 43: 678–680.

    PubMed  CAS  Google Scholar 

  320. Ericsson SY, Malmans CL. Placental transfer of fluoride investigated with F-18 in man and rabbit. Acta Obstet Gynecol Scand 1962; 41: 144–150.

    Google Scholar 

  321. Shen YW, Taves DR. Fluoride concentration in the human placenta and maternal and cord blood. Am J Obstet Biol Reprod (Paris) 1974;119:205–207.

    CAS  Google Scholar 

  322. Caldra R, Chavinie J, Laurent AM, et al. Preliminary study on transplacental transfer of fluoride. J Gynecol Obstet Biol Reprod (Paris) 1986;15:731–735.

    CAS  Google Scholar 

  323. Shimonovitz S, Patz D, Ever-Hadani P, et al. Umbilical cord fluoride serum levels may not reflect fetal fluoride status. J Perinat Med 1995; 23: 279–282.

    PubMed  CAS  Google Scholar 

  324. Maduska AL, Ahokas RA, Anderson GD, et al. Placental transfer of intravenous fluoride in the pregnant ewe. Am J Obstet Gynecol 1980; 136: 84–86.

    PubMed  CAS  Google Scholar 

  325. Ericsson SY, Ullberg S. Autoradiographic investigation of distribution of F-18 in mice and rats. Acta Odont Scand 1958; 16: 363–370.

    Google Scholar 

  326. Gedalia I, Brzezinski A, Zukerman H, et al. transfer of fluoride in the human fetus at low and high fluoride intake. J Dent Res 1964; 43: 669–680.

    PubMed  CAS  Google Scholar 

  327. Ron M, Singer L, Menczel J, et al. Fluoride concentration in amniotic fluid and fetal cord and maternal plasma. Eur J Obstet Gynecol Reprod Biol 1986; 21: 213–218.

    PubMed  CAS  Google Scholar 

  328. Brambilla E, Belluomo G, Malerba A, et al. Oral administration of fluoride in pregnant women, and the relation between concentration in maternal plasma and in amniotic fluid. Archs Oral Biol 1994; 39: 991–994.

    CAS  Google Scholar 

  329. Speirs RL. The value of prenatally administered fluoride. Dent Update 1983; 3: 43–51.

    Google Scholar 

  330. Gray HS. A morphological study of the influence of fluoride on rat molar teeth. Arch Oral Biol 1973; 18: 1451–1455.

    PubMed  CAS  Google Scholar 

  331. Glenn F. Immunity conveyed by a sodium fluoride supplement during pregnancy Part II. J Dent Child 1979; 46: 17–19.

    CAS  Google Scholar 

  332. Blayney JR, Hill IN. Evanston dental caries study. XXIV Prenatal. J Am Dent Assoc 1964; 69: 291–294.

    PubMed  CAS  Google Scholar 

  333. Tank G Storvick CA. Carise experience of children one to six years old in two Oregon communities (Corvallis and Albany) I. Effect of fluoride on caries experience and eruption of teeth. J Am Dent Assoc 1964; 69: 749–757.

    Google Scholar 

  334. Carlos JP, Gittlesohn AM, Haddon W. Caries in deciduous teeth in relation to maternal ingestion of fluoride. Public Health Rep 1962; 77: 658–660.

    PubMed  CAS  Google Scholar 

  335. Horowitz H, Heifetz S. Effects of prenatal exposure to fluoridation on dental caries. Public Heatlth Rep 1967; 82: 297–303.

    CAS  Google Scholar 

  336. Katz S, Muhler J. Prenatal and postnatal flroride and dental carise experience in deciduous teeth. J Am Dent Assoc 1968; 76: 305–311.

    Google Scholar 

  337. Kailis DG, Taylor SR, Davis GB, et al. Fluoride and caries obsercations on the effects of prenatal and postnatal fluoride on some Perth pre-school children. Med J Aust 1968; 2: 1037–1040.

    PubMed  CAS  Google Scholar 

  338. Prichard JL. The prenataland postnataleffects of fluoride supplements on Wset Australian school chidren aged 6,7, and 8, Perth, 1967. Aust Dent J 1969; 14: 335–338.

    Google Scholar 

  339. Glenn FB, Glenn WD, Duncan RC. Fluoride Tablet supplementation during pregnancy for caries immunity: a study of the offspring produced. Am J Obstet Gynecol 1982; 143: 560–564.

    PubMed  CAS  Google Scholar 

  340. Teuscher GW. Editorial. J Dent Child 1981; 48: 2.

    Google Scholar 

  341. Erickson D. Water fluorination and congenital mallformattions: no Association. J Am Dent Assoc 1976; 93: 981–986.

    PubMed  CAS  Google Scholar 

  342. Martin C. Effect of fluoride on murine cjromosomes. J Dent Res 1978; 57: 212–215.

    Google Scholar 

  343. Wada L, King JC. Trace element nutrition during pregnancy. Clin Obstet Gynecol 1994; 37: 574–586.

    PubMed  CAS  Google Scholar 

  344. Hetzel BS.An overview of the prevention and control of idine deficiency disorders. In: Hetzel BS, Dunn JT, Stanbury JB, eds. The prevention and control of iodine deficiency disorders. Amsterdam: Elsevier, 1987: 7–34.

    Google Scholar 

  345. DeLong GR. Effects of nutrition on brain development in humans. Am J Clin Nutr Suppl 1993; 57: 286S - 290S.

    CAS  Google Scholar 

  346. National Research Council. Recommended dietary allowances. 10th ed. Washington, DC: National Academy Press, 1989: 213–217.

    Google Scholar 

  347. Pennington JAT, Young BE, Wilson DB. Nutritional elements in U.S. diets: results from the Total Diet Study, 1982 to 1986.

    Google Scholar 

  348. Dunn JT. Iodine supplementation and the prevention of cretinism. Ann NY Acad Sci 1993; 678: 158–168.

    PubMed  CAS  Google Scholar 

  349. Hall R, Richards CJ, Lazarus JH. The thyroid and pregnancy. Br J Obstet Gynaecol 1993; 100: 512–515.

    PubMed  CAS  Google Scholar 

  350. Burrow GN. The thyroid gland and reproduction. In: Yen Sc, Jaffee RB, eds. Reproductive endocrinology. Philadelphia: Saunders, 1986: 424–440.

    Google Scholar 

  351. Burrow GN. Thyroid function and hyperfunction during gestation. Endocr Rev 1993; 14: 194–202.

    PubMed  CAS  Google Scholar 

  352. Glinoer D. Maternal thyroid function in pregnancy. J Endocrinol Invest 1993; 16: 374–378.

    PubMed  CAS  Google Scholar 

  353. Beckers C. Reinwein D. The thyroid and pregnancy. Stuttgart: Schattauer, 1991.

    Google Scholar 

  354. Hetzel BS. Iodine deficiency disorders (IDD) and their eradication. Lancet 1983; 2: 1126–1129.

    PubMed  CAS  Google Scholar 

  355. DeLong GR, Stanbury JB, Fierro-Benitez R. Neurologic signs in congenital iodine-deficiency disorder (endemic cretinism). Dev Med Child Neurol 1985; 27: 317–324.

    PubMed  CAS  Google Scholar 

  356. Pharoah POD. Geographical variation in the clinical manifestations of endemic cretinism. Trop Geograph Med 1976; 28: 259–267.

    CAS  Google Scholar 

  357. Ma T, Wang YY, Wang D, et al. Neuropsychological studies in iodine deficiency areas in China. In: DeLong GR, Robbins J, Condliffe PG, eds. Iodine and the brain. New York: Plenum, 1989; 259–268.

    Google Scholar 

  358. Potter BJ, Mano MT, Belling GB, et al. Retarded fetal brain development resulting from severe dietary iodine deficiency in sheep. Neuropath Appl Neurobiol 1982; 8: 303–313.

    CAS  Google Scholar 

  359. Melntosh GH, Potter BJ, Mano M, et al. The effect of maternal and fetal thyroidectomy on fetal brain development in the sheep. Neuropathol Appl Neurobiol 1983; 9: 215–223.

    Google Scholar 

  360. Mano MT, Potter BJ, Belling GB, et al. Fetal brain development in response to iodine deficiency in a primate model. J Neurol Sci 1987; 79: 287–300.

    PubMed  CAS  Google Scholar 

  361. Comite F, Burrow GN, Jorgensen EC. Thyroid hormone analogs and fetal goiter. Endocrinology 1978; 102: 1670–1674.

    Google Scholar 

  362. Shepard TH. Onset of function in the human fetal thyroid: biochemical and radioautographic studies from organ culture. J Clin Endocrinol Metab 1967; 27: 945–958.

    PubMed  CAS  Google Scholar 

  363. Pharoah POD, Connolly KJ. Iodine and brain development. Dev Med Child Neurol 1995; 38: 464–469.

    Google Scholar 

  364. Pharoah POD, Buttfield IH, Hetzel BS. Neurologic damage to the fetus resulting from severe iodine deficiency during pregnancy. Lancet 1971; 1: 308–310.

    PubMed  CAS  Google Scholar 

  365. Thilly CH. Psychomotor development in regions with endemic goiter. In: Hetzel BS, Smith RM, eds. Fetal brain disorders: recent approaches to the problem of mental deficiency. Amsterdam: Elsevier, 1981: 265–282.

    Google Scholar 

  366. Hetzel BS. Progress in the prevention and control of iodine deficiency disorders. Lancet 1987; 2: 266–269.

    PubMed  CAS  Google Scholar 

  367. Rotruck JT, Pope AL, Ganther HE, et al. Selenium: biochemical role as a component of glutathione peroxidase. Science 1973; 179: 588–590.

    PubMed  CAS  Google Scholar 

  368. Levander OA, Burk RF. Selenium. In: Shils ME, Olson JA, Shike M, eds. Modern nutrition in health and disease. 8th ed. Philadelphia: Lea & Febiger, 1994: 242–251.

    Google Scholar 

  369. Barrington JW, Lindsay P, James D, et al. Selenium deficiency and miscarriage: A possible link? Br J Obstet Gynaecol 1996; 103: 130–132.

    PubMed  CAS  Google Scholar 

  370. National Research Council. Recommended dietary allowances. 10th ed. Washington, DC: National Academy Press, 1989: 217–222.

    Google Scholar 

  371. Pennington JAT, Young BE, Wilson DB. Nutritional elements in U.S. diets: results from the Total Diet Study, 1982 to 1986. J Am Diet Assoc 1989; 89: 659–664.

    PubMed  CAS  Google Scholar 

  372. Levander OA. Considerations on the assessment of selenium status. Fed Proc 1985; 44: 2579–2583.

    PubMed  CAS  Google Scholar 

  373. Levander OA, Burk RF. Report of the 1986 ASPEN Research Workshop on Selenium in Clinical Nutrition. J Parenter Enter Nutr 1986; 10: 545–549.

    Google Scholar 

  374. Keshan Disease Research Group. Epidemiologic studies on the etiologic relationship of selenium and Keshan disease. Chin Med J 1979; 92: 477–482.

    Google Scholar 

  375. Fleming CR, Lie JT, McCall JT, et al. Selenium deficiency and fatal cardiomyopathy in a patient on home parenteral nutrition. Gastroenterology 1982; 83: 689–693.

    PubMed  CAS  Google Scholar 

  376. Institute of Medicine, Food, and Nutrition Board. Committee on Nutritional Status during Pregnancy and Lactation. Nutrition during Pregnancy. Part II: Nutritional Supplements. Washington, DC: National Academy Press, 1990.

    Google Scholar 

  377. Zachara BA, Wardak C, Didkowski W, et al. Changes in blood selenium and glutathione concentrations and glutathione peroxidase activity in human pregnancy. Gynecol Obstet Invest 1993; 35: 12–17.

    PubMed  CAS  Google Scholar 

  378. Shennan DB, Boyd CAR. Review article: placental handling of trace elements. Placenta 1988; 9: 333–343.

    PubMed  CAS  Google Scholar 

  379. Levander OA. Selenium. In: Mertz W, ed. Trace elements in human and animal nutrition. 5th ed. Orlando: Academic Press, 1986; 2: 209–279.

    Google Scholar 

  380. Stuart LD, Oehme FW. Environmental factors in bovine and porcine abortion. Vet Hum Toxicol 1982; 24: 435–441.

    PubMed  CAS  Google Scholar 

  381. Güvenç H, Karatas F, Güvenç M, et al. Low levels of selenium in mothers and their newborns with a neural tube defect. Pediatrics 1995; 95: 879–882.

    PubMed  Google Scholar 

  382. Roy AC, Ratnam SS, Karunanithy R Amniotic fluid selenium status in pre-eclampsia. Amniotic fluid selenium status in pre-eclampsia. Gynecol Obstet Invest 1989; 28: 161–162.

    PubMed  CAS  Google Scholar 

  383. Lu BY, Zhang SW, Liu WF, et al. Changes of selenium in patients with pregnancy induced hypertension. Clin J Obstet Gynecol 1990; 25: 325–327.

    CAS  Google Scholar 

  384. Han L, Zhou SM. Selenium supplement in the prevention of pregnancy induced hypertension. Clin Med J 1994; 107: 870–871.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davidson, K.M., Repke, J.T. (1998). Mineral Metabolism in Pregnancy. In: Cowett, R.M. (eds) Principles of Perinatal—Neonatal Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1642-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1642-1_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7227-4

  • Online ISBN: 978-1-4612-1642-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics