Skip to main content

Part of the book series: Springer Advanced Texts in Chemistry ((SATC))

Abstract

Nonreducing dextrins that form crystals from alcohol solutions have been known for over 100 years. They were first reported by Villers [1] in 1891. In 1903, during studies on food spoilage, Schardinger isolated heat-resistant bacteria and found that some of them fermented starch and formed two kinds of nonreducing, crystalline dextrins [2]. The organism was named Bacillus macerans because of its ability to macerate starchy vegetables [3]. Schardinger found that his dextrins gave very characteristic triiodide crystalline products that appeared as blue-purple hexagons and brown, fan-shaped needles. He called his two dextrins a-and 13-dextrins, respectively [4]. Later, these dextrins were called Schardinger dextrins in his honor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Literature Cited

  1. A. Villers, Compt. rend., 112 (1891) 536–541

    Google Scholar 

  2. F. Schardinger, Wein. Klin. Wochschr., 16 (1903) 468–479; 17 (1904) 207–214.

    Google Scholar 

  3. F. SchardingerZentr. Bakteriol. Parasitenk, Abt. II, 14 (1905) 772–778.

    CAS  Google Scholar 

  4. E Schardinger, Zentr. Bakteriol. Parasitenk, Abt. II, 29 (1911) 188–193.

    Google Scholar 

  5. K. Freudenberg and R. Jacobi, Ann. Chem. 518 (1935) 102–108.

    Article  CAS  Google Scholar 

  6. K. Freudenberg, G. Blomquist, L. Ewald, and K. Soff, Chem. Ber., 69 (1936) 1258–1266.

    Google Scholar 

  7. D. FrenchAdv. Carbohydr. Chem.,12 (1957) 189–260.

    Article  CAS  Google Scholar 

  8. J.A. Thoma and L. Stewart, in Starch: Chemistry and Technology, pp. 209–249 (R. L. Whistler, E. E. Paschall, J. N. BeMiller, and H. J. Roberts, eds.) Academic, New York (1965).

    Google Scholar 

  9. D. French and R. E. Rundle,J. Am. Chem. Soc., 64 (1942) 1651–1653.

    Article  CAS  Google Scholar 

  10. K. Freudenberg and E. Cramer, Z. Naturforsch., 3b (1948) 464–470.

    Google Scholar 

  11. D. French, D. W. Knapp, and J. H. Pazur, J. Am. Chem. Soc.,72 (1950) 5150–5152.

    Article  CAS  Google Scholar 

  12. A. O. Pulley and D. French, Biochem. Biophys. Res. Commun., 5 (1961) 11–15.

    Article  CAS  Google Scholar 

  13. D. French, A. O. Pulley, J. A. Effenberger, M. A. Rougvie, and M. Abdullah, Arch. Biochem. Biophys., 111 (1965) 153–160.

    Article  CAS  Google Scholar 

  14. T. Endo, H. Ueda, S. Kobayashi, and T. Nagai, Carbohydr. Res., 269 (1995) 369–373.

    Article  CAS  Google Scholar 

  15. T. Endo, H. Nagase, H. Ueda, S. Kobayashi, and T. Nagai, Chem. Pharm. Bull. 45 (1997) 532–536.

    Article  CAS  Google Scholar 

  16. J. Szejtli, Stärke, 29 (1976) 26–33; 30 (1978) 427–431; 33 (1981) 387–390.

    Google Scholar 

  17. D. W. Griffiths and M. L. Bender, Adv. Catal.,23 (1973) 209–261.

    Article  CAS  Google Scholar 

  18. N. Hennrich and F. Cramer, J. Am. Chem. Soc., 78 (1965) 1121–1123.

    Article  Google Scholar 

  19. E. Cramer and G. Mackensen, Angew. Chem. Int. Ed. Engl., 5 (1966) 601–606; Chem. Ber., 103 (1970) 2138–2142.

    Google Scholar 

  20. S. P. Tian, P. Forgo, and V. T. D’ Souza, Tetrahedron Lett.,37 (1996) 8309–8312.

    Article  CAS  Google Scholar 

  21. A. P. Croft and R. A. Bartsch, Tetrahedron,39 (1983) 1417–1474.

    Article  CAS  Google Scholar 

  22. Y. Okada, Y. Kubota, K. Koizumi, S. Hizukuri, T. Ohfuji, and K. Ogata, Chem. Pharm.Bull.,36 (1988) 2176–2185.

    Article  CAS  Google Scholar 

  23. S. Hizukuri, J.-I. Abe, K. Koizumi, Y. Okada, Y. Kubota, S. Sakai, and T. Mandai, Carbohydr. Res., 185 (1989) 191–198.

    Article  CAS  Google Scholar 

  24. S. Kobayashi, K. Nakashima, and M. Arahira, Carbohydr. Res., 192 (1989) 223–231.

    Article  CAS  Google Scholar 

  25. A. Harada and M. Kamachi, Macromolecules, 23 (1990) 2821–2923.

    Article  CAS  Google Scholar 

  26. A. Harada, J. Li, and M. Kamachi, Nature,356 (1992) 325–327.

    Article  CAS  Google Scholar 

  27. A. Harada and M. Kamachi, J. Chem. Soc. Chem. Commun.,(1990) 1322–1323.

    Google Scholar 

  28. G. Wenz and B. Keller, Angew. Chem. Int. Ed. Engl., 31 (1992) 197–199.

    Article  Google Scholar 

  29. F. C. McIntire, W. H. Peterson, and A. J. Riker, J. Biol. Chem., 143 (1942) 491–496.

    CAS  Google Scholar 

  30. E. W. Putman, A. L. Potter, R. Hodgson, W. Z. Hassid, J. Am. Chem. Soc., 72 (1950) 5024–5026.

    Article  CAS  Google Scholar 

  31. P. A. J. Gorin, J. F. T. Spencer, and D. W. S. Westlake, Can. J. Chem.,39 (1961) 1067–1073.

    Article  CAS  Google Scholar 

  32. L. P. T. M. Zevenhuizen and H. J. Scholten-Koerselman, Antonie Leewenhoek, 45 (1979) 165–175.

    Article  CAS  Google Scholar 

  33. W. S. York, M. McNeil, A. G. Darvill, and P. Albersheim, J. Bacteriol., 142 (1980) 243–248.

    CAS  Google Scholar 

  34. J. M. DaCastro, M. Bruneteau, S. Mutaftshiev, G. Truchet, and G. Michel, FEMS Microbiol. Lett., 18 (1983) 269–275.

    Google Scholar 

  35. A. Amemura, M. Hisamatsu, H. Mitani, and T. Harada, Carbohydr. Res., 114 (1983) 277–285.

    Article  CAS  Google Scholar 

  36. A. Dell, W. S. York, M. McNeil, A. G. Darvill, and P. Albersheim, Carbohydr. Res., 117 (1983) 185–200.

    Article  CAS  Google Scholar 

  37. M. Hisamatsu, A. Amemura, K. Koizumi, T. Utamura, and Y. Okada, Carbohydr. Res., 121 (1983) 31–40.

    Article  CAS  Google Scholar 

  38. A. Palleschi and V. Crescenzi, Gazz. Chim. Ital., 115 (1985) 243–245.

    CAS  Google Scholar 

  39. W. S. York, J. U. Thomsen, and B. Meyer, Carbohydr. Res., 248 (1993) 55–80.

    Article  CAS  Google Scholar 

  40. M. W. Breedveld, L. P. T. M. Zevenhuizen, and A. J. B. Zehnder, Appl. Environ. Microbiol., 56 (1990) 2080–2086.

    CAS  Google Scholar 

  41. M. W. Breedveld, L. P. T. M. Zevenhuizen, and A. J. B. Zehnder, J. Bacteriol.,174 (1992) 6336–6342.

    CAS  Google Scholar 

  42. M. Hisamatsu,Carbohydr.Res., 231 (1992) 137–146.

    Article  CAS  Google Scholar 

  43. M. Batley, J. W. Redmond, S. P. Djordjevic, and B. G. Rolfe, Biochim. Biophys. Acta, 901 (1987) 119–126.

    Article  CAS  Google Scholar 

  44. M. Hisamatsu, T. Yamada, T. Higashiura, and M. Ikeda, Carbohydr. Res., 163 (1987) 115–122.

    Article  CAS  Google Scholar 

  45. K. J. Miller, R. S. Gore, and A. J. Benesi, J. Bacteriol., 170 (1988) 4569–4575.

    CAS  Google Scholar 

  46. K. J. Miller, V. N. Reinhold, A. C. Weissborn, and E. P. Kennedy, Biochim. Biophys. Acta, 901 (1987) 112–118.

    Article  CAS  Google Scholar 

  47. L. P. T. M. Zevenhuizen, A. Van Veldhuizen, and R. H. Fokkens, Antonie Leewenhoek, 57 (1990) 173–178.

    Article  CAS  Google Scholar 

  48. K. J. Miller, E. P. Kennedy, and V. N. Reinhold, Science, 231 (1986) 48–51.

    Article  CAS  Google Scholar 

  49. A. Zorreguieta, S. Cavaignac, R. A. Geremia, and R. A. Ugalde, J. Bacteriol.,172 (1990) 4701–4704.

    CAS  Google Scholar 

  50. T. Dylan, D. R. Helinski, and G. S. Ditta, J. Bacteriol., 172 (1990) 1400–1408.

    CAS  Google Scholar 

  51. G. A. Cangelosi, L. Hung, V. Puvanesarajah, G. Stacey, D. A. Ozga, J. A. Leigh, and E. W. Nester, J. Bacteriol., 169 (1987) 2086–2091.

    CAS  Google Scholar 

  52. M. Abe, A. Amemura, and S. Higashi, Plant Soil, 64 (1982) 315–324.

    Article  CAS  Google Scholar 

  53. W. F. Dudman and A. J. Jones, Carbohydr. Res., 84 (1980) 358–364.

    Article  CAS  Google Scholar 

  54. K. J. Miller, R. S. Gore, R. Johnson, A. J. Benesi, and V. N. Reinhold, J. Bacteriol., 172 (1990) 136–142.

    CAS  Google Scholar 

  55. D. B. Rolin, P. E. Pfeffer, S. F. Osman, B. S. Szwergold, F. Kappler, and A. J. Benesi, Biochim. Biophys. Acta, 1116 (1992) 215–225.

    Article  CAS  Google Scholar 

  56. R. E. Pfeffer, S. E Osman, A. Hotchkiss, A. A. Bhagwat, D. L. Keister, and K. M. Valentine, Carbohydr. Res., 296 (1996) 23–37.

    Article  CAS  Google Scholar 

  57. T. Oguma, K. Tobe, and M. Kobayashi, FEBS Lett.,345 (1994) 135–138.

    Article  CAS  Google Scholar 

  58. T. Oguma, T. Horiuchi, and M. Kobayashi, Biosci. Biotech. Biochem., 57 (1993) 1225–1227.

    Article  CAS  Google Scholar 

  59. G. L. Côté and R Biely, Eur. J. Biochem., 226 (1994) 641–648.

    Article  Google Scholar 

  60. M. Kawamura, T. Uchiyama, T. Kuramoto, Y. Tamura, and K. Mizutani, Carbohydr. Res., 192 (1980) 83–90.

    Article  Google Scholar 

  61. T. Ogawa and Y. Takahashi, Carbohydr. Res., 138 (1985) C5–C9.

    Article  CAS  Google Scholar 

  62. Y. Takahashi and T. Ogawa, Carbohydr. Res., 164 (1987) 277–296.

    Article  CAS  Google Scholar 

  63. Y. Takahashi and T. Ogawa, Carbohydr. Res., 169 (1987) 127–149.

    Article  CAS  Google Scholar 

  64. M. Mori, Y. Ito, and T. Ogawa, Tetrahedron Lett., 30 (1989) 1273–1276.

    Article  CAS  Google Scholar 

  65. M. Mori, Y. Ito, and T. Ogawa, Carbohydr. Res., 192 (1989) 131–146.

    Article  CAS  Google Scholar 

  66. R. M. Collins and H. A. Mezher, Tetrahedron Lett., 31 (1990) 4517–4520.

    Article  CAS  Google Scholar 

  67. M. Nishizawa, H. Imagawa, Y. Kan, and H. Yamada, Tetrahedron Lett., 32 (1991) 5551–5554.

    Article  CAS  Google Scholar 

  68. T. Takaha, M. Yanase, H. Takata, S. Okada, and S. M. Smith, J. Biol Chem., 271 (1996) 2902–2908.

    Article  CAS  Google Scholar 

  69. H. Takata, T. Takaha, S. Okada, M. Takagi, and T. Imanaka, J. Bacteriol., 178 (1996) 1600–1606.

    CAS  Google Scholar 

  70. H.Takata, T. Takaha, S. Okada, S. Hizukuri, M. Takagi, and T. Imanaka, Carbohydr. Res., 295 (1996) 91–101.

    CAS  Google Scholar 

References for Further Study

  • “The Schardinger dextrins,” D. French, Adv. Carbohydr. Chem., 12 (1957) 189–259.

    CAS  Google Scholar 

  • “Cycloamyloses as catalysts,” D. W. Griffiths and M. L. Bender, Adv. Catal., 23 (1973) 209–261.

    CAS  Google Scholar 

  • “Synthesis of chemically modified cyclodextrins,” A. P. Croft and R. A. Bartsch, Tetrahedron, 39 (1983) 1414–1474.

    Article  Google Scholar 

  • “Production, characterization, and applications of cyclodextrins,” H. Bender, Adv. Biotech. Processes, 6 (1986) 31–71.

    CAS  Google Scholar 

  • “Inclusion complexes of the cyclomalto-oligosaccharides (cyclodextrins),” R.J. Clarke,J. H. Coates, and S. F. Lincoln, Adv. Carbohydr. Chem. Biochem., 46 (1988) 205–249.

    Article  CAS  Google Scholar 

  • “A collection of invited papers dealing with cyclodextrins,” Carbohydr. Res., 192 (1989).

    Google Scholar 

  • “Cyclic ß-glucans of members of the family Rhizobiaceae,” M. W. Breedveld and K. J. Miller, Microbiol. Rev., 58 (1994) 145–161.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robyt, J.F. (1998). Cyclodextrins. In: Essentials of Carbohydrate Chemistry. Springer Advanced Texts in Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1622-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1622-3_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7220-5

  • Online ISBN: 978-1-4612-1622-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics