Skip to main content

Part of the book series: Springer Advanced Texts in Chemistry ((SATC))

Abstract

Carbohydrates are polyhydroxy aldehydes or ketones. Therefore, one of their primary chemical properties is that of a polyalcohol. It is natural then that one of the first types of derivatives to be formed was esters. The formation of a completely acetylated carbohydrate can be obtained by the reaction with acetic anhydride in the presence of either a basic or an acidic catalyst. When reducing carbohydrates react with acetic anhydride in the presence of sodium acetate at 4°C, the ßanomer is favored (reactions 4.1 and 4.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ac:

acetyl

Ac2O:

acetic anhydride

AcOH:

acetic acid

Bn:

benzyl

Bu:

butyl

Bz:

benzoyl

DAST:

diethylaminosulfur triflouride

DMF:

dimethylformamide

DMSO:

dimethylsulfoxide

HMPA:

hexamethyl phosphoramide

Me:

methyl

Ph:

phenyl

Ph3P:

triphenylphosphine

Pv:

pivaloyl (trimethyl acetyl)

Ra Ni:

Raney nickel

Tf:

trifyl (trifluoromethyl sulfonyl)

Tf2O:

trifylic anhydride (trifluoromethylsulfonyl anhydride)

THF:

tetrahydrofuran

Tr:

trityl (triphenyl methyl)

Ts:

tosyl (p-toluene sulfonyl)

TsOH:

tosic acid

Reference

Literature Cited

  1. G. ZemplénChem. Ber. 59 (1926) 1258–1261.

    Google Scholar 

  2. J. BöesekenAdv. Carbohydr. Chem., 4 (1949) 189–202.

    Google Scholar 

  3. J. F. RobytCarbohydr. Res., 40 (1975) 373–374.

    CAS  Google Scholar 

  4. H. Pelmore and M. C. R. Symons, Carbohydr. Res., 155 (1986) 206–215.

    CAS  Google Scholar 

  5. K. B. Hicks, D. L. Raupp, and P. W. Smith, J. Agric. Food Chem., 32 (1984) 288–292.

    CAS  Google Scholar 

  6. R. S. TipsonAdv. Carbohydr. Chem. 8 (1953) 108–215.

    Google Scholar 

  7. F. D. CramerMethods Carbohydr. Chem. 2 (1963) 244–245.

    Google Scholar 

  8. J. M. Williams and A. C. Richardson, Tetrahedron, 23 (1967) 1369–1378.

    CAS  Google Scholar 

  9. W. N. Haworth, J. Chem. Soc.,107 (1915) 8–14.

    CAS  Google Scholar 

  10. S. HakomoriJ. Biochem. (Tokyo) 55 (1964) 205–208.

    CAS  Google Scholar 

  11. B. Helfrich, Adv. Carbohydr. Chem., 3 (1948) 79–111.

    Google Scholar 

  12. L. Hough, K. Mufti, and R. Khan, Carbohydr. Res., 21 (1972) 144–147.

    CAS  Google Scholar 

  13. R. Khan, Carbohydr. Res., 22 (1972) 441–445.

    CAS  Google Scholar 

  14. M. Bessodes, D. Komiotis, and K. Antonakis, Tetrahedron Lett., 27 (1986) 579–580.

    CAS  Google Scholar 

  15. G. Zemplén, L. Csürös, and S. Angyal, Chem. Ber.,70 (1937) 1848–1853.

    Google Scholar 

  16. T. Iversen and D. R. Bundle, J. Chem. Soc. Chem. Commun.,(1981) 1240–1242.

    Google Scholar 

  17. J. M. Berry and L. D. Hall, Carbohydr. Res., 47 (1976).

    Google Scholar 

  18. C. M. McCloskey, Adv. Carbohydr. Chem ., 12 (1957) 148–149.

    Google Scholar 

  19. M. H. Park, R. Takeda, and K. Nakanishi, Tetrahedron Lett., 28 (1987) 3823–3824.

    CAS  Google Scholar 

  20. C. C. Sweeley, R. Bentley, M. Makita, and W. W. Wells, J. Am. Chem. Soc., 85 (1963) 2497–2500.

    CAS  Google Scholar 

  21. G. C. S. Dutton, Adv. Carbohydr. Chem. Biochem., 28 (1973) 23–54.

    Google Scholar 

  22. O. T. Schmidt, Methods Carbohydr. Chem., 2 (1963) 319–325.

    Google Scholar 

  23. A. N. DeBelder, Adv. Carbohydr. Chem., 20 (1965) 219–301.

    CAS  Google Scholar 

  24. H. W. Coles, L. D. Goodhue, and R. M. Hixon, J. Am. Chem. Soc.,51 (1929) 523–525.

    Google Scholar 

  25. K. Freudenberg, W. Dun, and H. von Hochstetter, Chem. Ber., 61 (1928) 1735–1738.

    Google Scholar 

  26. W. A. Szarek, A. Zamojski, K. N. Tiwari, E. R. Ison, Tetrahedron Lett., 27 (1986) 3827–3830.

    CAS  Google Scholar 

  27. B. C. Pressman, L. Anderson, H. A. Lardy, J. Am. Chem. Soc. 72 (1950) 240–243.

    Google Scholar 

  28. T. G. Bonner, E. J. Bourne, R. F. J. Cole, and D. Lewis, Carbohydr. Res., 21 (1972) 29–37.

    CAS  Google Scholar 

  29. S. A. Barker and E. J. Bourne, Adv. Carbohydr. Chem., 7 (1951) 137–207.

    Google Scholar 

  30. E. Baer, J. Am. Chem. Soc.,67 (1945) 338–339.

    CAS  Google Scholar 

  31. R. Khan and K. S. Mufti, Carbohydr. Res., 43 (1975) 247–253.

    CAS  Google Scholar 

  32. R. Khan, Carbohydr. Res., 32 (1974) 375–379.

    CAS  Google Scholar 

  33. R. Khan, K. S. Mufti, and M. R. Jenner, Carbohydr. Res., 65 (1978) 109–113.

    CAS  Google Scholar 

  34. P. J. Garegg and H. Hultberg, Carbohydr. Res., 93 (1981) C 10-C 11.

    CAS  Google Scholar 

  35. P. J. Garegg, H. Hultberg, and S. Wallin, Carbohydr. Res., 108 (1982) 97–101.

    CAS  Google Scholar 

  36. M. Ek, P. J. Garegg, H. Hultberg, and S. Oscarson, J. Carbohydr. Chem., 2 (1983) 305–311.

    CAS  Google Scholar 

  37. J. Gelas, Adv. Carbohydr. Chem. Biochem., 39 (1981) 71–102.

    CAS  Google Scholar 

  38. M. L. Wolfrom and A. Thompson, J. Am. Chem. Soc.,56 (1934) 880–883.

    CAS  Google Scholar 

  39. M. L. Wolfrom and J. V. Karabinos, J. Am. Chem. Soc.,66 (1944) 909–913.

    CAS  Google Scholar 

  40. H. S. Isbell and W. W. Pigman, J. Res. Natl. Bur. Stand., 10 (1933) 337–356.

    CAS  Google Scholar 

  41. J. W. Green, Adv. Carbohydr. Chem., 3 (1948) 151–152.

    Google Scholar 

  42. J. U. Nef, Ann. Chem., 280 (1894) 263–267.

    CAS  Google Scholar 

  43. E. Fischer, Chem. Ber., 23 (1890) 2611–2615.

    Google Scholar 

  44. J. C. Sowden and H. O. L. Fischer, J. Am. Chem. Soc.,69 (1947) 1963–1966.

    CAS  Google Scholar 

  45. O. Ruff, Chem. Ber.,31 (1898) 1573–1577;

    CAS  Google Scholar 

  46. O. Ruff and G. Ollendorf, Chem. Ber.,33 (1900) 1798–1802;

    CAS  Google Scholar 

  47. O. Ruff, Chem. Ber.,34 (1901) 1362–1365.

    CAS  Google Scholar 

  48. H. G. Fletcher, Jr., Methods Carbohydr. Chem., 1 (1962) 77–79;

    Google Scholar 

  49. R. L. Whistler and J. N. BeMiller, Methods Carbohydr. Chem., 1 (1962) 79–80;

    CAS  Google Scholar 

  50. G. N. Richards, Methods Carbohydr. Chem., 1 (1962) 180–182.

    CAS  Google Scholar 

  51. R Weygand and R. Lowenfeld, Chem. Ber, 83 (1950) 559–567.

    CAS  Google Scholar 

  52. B. Helferich and K. Weis, Chem. Ber., 89 (1956) 314–318.

    CAS  Google Scholar 

  53. C. M. McCloskey, R. E. Pyle, and G. H. Coleman, J. Am. Chem. Soc.,66 (1944) 349–350.

    CAS  Google Scholar 

  54. P. Z. Allen, Methods Carbohydr. Chem., 1 (1962) 372–374.

    CAS  Google Scholar 

  55. R. K. Ness, H. G. Fletcher, Jr., and C. S. Hudson, J. Am. Chem. Soc., 72 (1950) 4547–4548.

    CAS  Google Scholar 

  56. H. G. Fletcher, Jr., Methods Carbohydr. Chem.,2 (1963) 197–198.

    Google Scholar 

  57. R J. Reither, J. Am. Chem. Soc., 67 (1945) 1056–1057.

    Google Scholar 

  58. H. W. Kosterlitz, Biochem. J., 33 (1939) 1087–1089.

    CAS  Google Scholar 

  59. T. Posternak, J. Am. Chem. Soc., 72 (1950) 4824–4825.

    CAS  Google Scholar 

  60. W. Pfleiderer and E. Bühler, Chem. Ber., 89 (1966) 3022–3026.

    Google Scholar 

  61. H. Paulsen, Z. Györgydeák, and M. Friedmann, Chem. Ber.,107 (1974) 1568–1571.

    CAS  Google Scholar 

  62. H. S. Isbell and H. Frush, J. Org. Chem.,23 (1958) 1309–1319.

    CAS  Google Scholar 

  63. D. E. Walker and B. Axelrod, Arch. Biochem. Biophys.,195 (1979) 392–395.

    CAS  Google Scholar 

  64. Z. Györgydeák and L. Szilagyi, Ann. Chem.,499 (1977) 1987–1989.

    Google Scholar 

  65. F. MicheelChem. Ber. 62 (1920) 687–690.

    Google Scholar 

  66. P. Karrer and A. P. Smirnoff, Helu Chim. Acta,4 (1921) 817–822.

    CAS  Google Scholar 

  67. G. Zemplén, R. Bognár, and G. Pongor, Acta Chim. Acad. Sci. Hung., 19 (1956) 285–291.

    Google Scholar 

  68. P. Brigl, Z. Physiol. Chem., 116 (1921) 1–5; 122 (1922) 245–250.

    CAS  Google Scholar 

  69. R. U. Lemieux and J. Howard, Methods Carbohydr. Chem.,2 (1963) 400–402.

    Google Scholar 

  70. W. J. Hickinbottom, J. Chem. Soc.,(1928) 3140–3142.

    Google Scholar 

  71. W. Koenigs and E. Knorr, Chem. Ber., 34 (1901) 957–981.

    Google Scholar 

  72. E Micheel and A. Klemer, Adv. Carbohydr. Chem., 16 (1961) 85–103.

    CAS  Google Scholar 

  73. T. Mukaiyama, Y. Murai, and S. ShodaChem. Lett., (1981) 431–434;

    Google Scholar 

  74. T. Mukaiyama, Y. Hashimoto, and S. Shoda, Chem. Lett., (1983) 935–938.

    Google Scholar 

  75. S. Hashimoto, M. Hayashi, and R. NoyoriTetrahedron Lett 25 (1984) 1379–1382.

    Google Scholar 

  76. J. E. G. Barnett, W. T. S. Jarvis, and K. A. Munday, Biochem. J., 105 (1967) 669–672;

    CAS  Google Scholar 

  77. D. S. Genghof and E. J. Hehre, Proc. Soc. Exp. Biol. Med., 140 (1972) 1298–1301;

    CAS  Google Scholar 

  78. G. Okada and E. J. Hehre, Carbohydr. Res., 26 (1973) 240–243;

    CAS  Google Scholar 

  79. M. Ariki and T. Fukui, J. Biochem. (Tokyo), 78 (1975) 1197–1201;

    Google Scholar 

  80. C. D. Poulter and H. C. Rifling, Acc. Chem. Res., 11 (1978) 307–337;

    CAS  Google Scholar 

  81. B. Y. Tao, P. J. Reilly, and J. E Robyt, Biochim. Biophys. Acta,995 (1989) 214–220.

    CAS  Google Scholar 

  82. L. D. Hall, J. F. Manville, and N. S. Bhacca, Can. J. Chem.,47 (1969) 1–8.

    CAS  Google Scholar 

  83. K. Igarashi, T. Honma, J. Irisawa, Carbohydr. Res., 11 (1969) 577–587.

    CAS  Google Scholar 

  84. D. H. Brauns, J. Am. Chem. Soc.,45 (1923) 833–835;

    CAS  Google Scholar 

  85. S. Kitahata, C. F. Brewer, D. S. Genghof, T. Sawai, and E. J. Hehre, J. Biol. Chem.,256 (1981) 6017–6026.

    CAS  Google Scholar 

  86. M. Hayashi, S.-I. Hashimoto, and R. Noyori, Chem. Lett.,(1984) 1747–1750.

    Google Scholar 

  87. W. A. Szarek, G. Grynkiewicz, B. Doboszewshi, and G. W. Hay, Chem. Leu., (1984) 1751–1754.

    Google Scholar 

  88. K. Igarashi, Adv. Carbohydr. Chem. Biochem., 34 (1977) 243–283.

    CAS  Google Scholar 

  89. W. J. Hickinbottom, J. Chem. Soc.,(1929) 1676–1687.

    Google Scholar 

  90. R. R. Schmidt and W. Kinzy, Adv. Carbohydr. Chem. Biochem., 50 (1994) 21–120.

    CAS  Google Scholar 

  91. H. Kunz, Angew. Chem. Int. Ed. Engl., 26 (1987) 294–308.

    Google Scholar 

  92. W. N. Haworth and W. J. Hickinbottom, J. Chem. Soc.,(1931) 2847–2849.

    Google Scholar 

  93. R. U. Lemieux and H. F. Bauer, Can. J. Chem.,32 (1954) 340–344.

    CAS  Google Scholar 

  94. R. U. Lemieux, Can. J. Chem.,31 (1953) 949–951.

    CAS  Google Scholar 

  95. R. U. Lemieux and G. Huber, J. Am. Chem. Soc., 75 (1953) 4118–4119; 78 (1956) 4117–4118.

    Google Scholar 

  96. S. J. Cook, R. Khan, and J. M. Brown, J. Carbohydr. Chem.,3 (1984) 343–348.

    CAS  Google Scholar 

  97. M. Blanc-Muesser, J. Defaye, and H. Driguez, Carbohydr. Res.,67 (1978) 305–328.

    CAS  Google Scholar 

  98. S. Cottaz, H. Driguez, and B. Svensson, Carbohydr. Res.,228 (1992) 299–305.

    CAS  Google Scholar 

  99. E. Fischer Chem. Ber., 47 (1914) 196–200.

    CAS  Google Scholar 

  100. M. Bergmann, H. Schotte, and W. Lechinsky, Chem. Ber., 55 (1922) 158–160.

    Google Scholar 

  101. W. G. Overend, M. Stacey, and J. Stanec, J. Chem. Soc.,(1949) 2841–2845.

    Google Scholar 

  102. B. HelferichAdv. Carbohydr. Chem., 7 (1952) 210–245.

    Google Scholar 

  103. J. Adamson, A. B. Foster, L. D. Hall, R. N. Johnson, and R. H. Hesse, Carbohydr. Res.,15 (1970) 351–359.

    CAS  Google Scholar 

  104. B. Evers, P. Mischnick, and J. Thiem, Carbohydr. Res.,262 (1994) 335–341.

    CAS  Google Scholar 

  105. B. Evers, M. Petricek, and J. Thiem, Carbohydr. Res. 300 (1997) 153–159.

    CAS  Google Scholar 

  106. T. Rosen, I. M. Lico, and D. T. W. Chu, J. Org. Chem. 53 (1988) 1580-1582;

    CAS  Google Scholar 

  107. T. Suami Y. Fukuda, J. Yamamoto, Y. Saito, M. Ito, and S. Ohba J. Carbohydr. Chem 1 (1982) 9-15.

    CAS  Google Scholar 

  108. E.-P. Barrette and L. Goodman, J. Org. Chem., 49 (1984) 176–178.

    CAS  Google Scholar 

  109. M. J. Robins, J. S. Wilson, and F. Hansske, J. Am. Chem. Soc., 105 (1983) 4059–5065.

    CAS  Google Scholar 

  110. P. Herdewiju, J. Baizarini, E. DeClercq, R. Pauwels, M. Baba, S. Broden, and H. Vanderhaeghe, J. Med. Chem.,30 (1987) 1270–1280.

    Google Scholar 

  111. E Sanger, S. Nicklen, and A. R. Coulson, Proc. Natl. Acad. Sci. USA,74 (1977) 5463–5467.

    CAS  Google Scholar 

  112. A. F. Russell and J. G. Moffatt, Biochemistry, 8 (1969) 4889–4896;

    CAS  Google Scholar 

  113. K. GeiderEur. J. Biochem., 27 (1974) 555–563.

    Google Scholar 

  114. J. P. Horowitz, J. Chua, and M. Noel, J. Org. Chem., 29 (1964) 2076–2078.

    Google Scholar 

  115. R. F. Butterworth and S. Hanessian, Synthesis,(1971) 70–88.

    Google Scholar 

  116. C. R. Haylock, L. D. Melton, K. N. Slessor, and A. S. Tracey, Carbohydr. Res.,16 (1971) 375–382.

    CAS  Google Scholar 

  117. W. J. Middleton, J. Org. Chem.,40 (1975) 574–578;

    CAS  Google Scholar 

  118. T. J. Tweson and M. J. Welsh, J. Org. Chem.,43 (1978) 1090–1094;

    Google Scholar 

  119. M. Sharma and W. Korytnyk, Tetrahedron Lett., (1977) 573–576.

    Google Scholar 

  120. S. G. Withers, D. J. MacLennan, I. P. Street, Carbohydr. Res.,154 (1986) 127–144.

    CAS  Google Scholar 

  121. R. A. Sharma, I. Kavai, Y. L. Fu, and M. Bobek, Tetrahedron Lett.,(1977) 3433–3436.

    Google Scholar 

  122. T. P. Binder and J. F. Robyt, Carbohydr. Res.,132 (1984) 173–177.

    CAS  Google Scholar 

  123. T. P. Binder and J. F. Robyt, Carbohydr. Res., 147 (1986) 149–154.

    CAS  Google Scholar 

  124. M. J. Bernaerts, J. Furnelle, and J. De Ley, Biochim. Biophys. Acta,69 (1963) 322–330.

    CAS  Google Scholar 

  125. J. Van Beeumen and J. De Ley, Eur. J. Biochem., 6 (1968) 331–343.

    Google Scholar 

  126. M. Pietsch, M. Walter, and K. Buchholz, Carbohydr. Res.,254 (1994) 183–194.

    CAS  Google Scholar 

  127. Y. Ueno, K. Hori, R. Yamauchi, M. Kiso, A. Hasegawa, and K. Kato, Carbohydr. Res., 89 (1981) 271–278.

    CAS  Google Scholar 

  128. R. L. Whistler and R. E. Gramera, J. Org. Chem., 29 (1964) 2609–2610.

    CAS  Google Scholar 

  129. S. Inouye, T. Tsuroka, T. Ito, and T. NiidaTetrahedron 24 (1968) 2125–2144.

    CAS  Google Scholar 

  130. R. L. Whistler, M. S. Feather, and D. L. Ingles .J. Am. Chem. Soc.,84 (1962) 122–124.

    CAS  Google Scholar 

  131. R. L. Whistler and W. C. Lake, Biochem. J., 130 (1972) 919–925;

    CAS  Google Scholar 

  132. R. L. Whistler Science 186 (1974) 431–433.

    Google Scholar 

  133. H. Yamamoto and S. Inokawa, Adv. Carbohydr. Chem.,42 (1984) 140–142.

    Google Scholar 

  134. A. K. M. Anisuzzaman and R. L. Whistler, Carbohydr. Res., 61 (1978) 511–518.

    CAS  Google Scholar 

  135. P. J. Garegg and B. Samuelsson, J. Chem. Soc. Chem. Commun.,(1979) 978–980.

    Google Scholar 

  136. R. Khan, Pure Appl. Chem., 56 (1984) 833–844;

    CAS  Google Scholar 

  137. F. W. Lichtenthaler, S. Immel, and U. Kreis, in Carbohydrates as Raw Materials, pp. 1–32 (F. W. Lichtenthaler, ed.) VCH Weinheim, Germany (1991).

    Google Scholar 

  138. J. N. Zikopoulos, S. H. Eklund, and J. E. Robyt, Carbohydr. Res.,104 (1982) 245–251.

    CAS  Google Scholar 

  139. S. H. Eklund and J. E Robyt, Carbohydr. Res.,177 (1988) 253–258.

    CAS  Google Scholar 

  140. A. Tanriseven and J. E. Robyt, Carbohydr. Res.,186 (1989) 87–94.

    CAS  Google Scholar 

  141. R. Mukerjea and J. F. Robyt, unpublished results.

    Google Scholar 

  142. S. Umezawa, T. Tsuchiya, S. Nakada, and K. Tatsuta, Bull. Chem. Soc. Jpn., 40 (1967) 395–401.

    CAS  Google Scholar 

  143. L. D. Melton and K. N. Slessor, Carbohydr. Res., 18 (1971) 29–37.

    CAS  Google Scholar 

  144. L. D. Melton and K. N. Slessor, Canad. J. Chem., 51 (1973) 327–332.

    CAS  Google Scholar 

  145. K. Kitaoka and J. E Robyt, unpublished results.

    Google Scholar 

  146. J. Yoon, S. Hong, K. A. Martin, and A. W. Czarnik, J. Org. Chem.,60 (1995) 2792–2795.

    CAS  Google Scholar 

  147. A. E. T. De Nooy, A. C. Besemer, and H. Van Bekkum, Carbohydr. Res., 269 (1995) 89–98.

    Google Scholar 

  148. P. S. Chang and J. E Robyt, J. Carbohydr. Chem.,15 (1996) 819–830.

    CAS  Google Scholar 

  149. B. Helferich and E. Himmen, Chem. Ber., 61 (1928) 1825–1831; 62 (1929) 2136–2141.

    Google Scholar 

  150. T. M. Cheung, D. Horton, and W. Weckerle, Carbohydr. Res.,58 (1977) 139–151.

    CAS  Google Scholar 

  151. R. L. Taylor and H. E. Conrad, Biochemistry, 11 (1972) 1383–1387.

    CAS  Google Scholar 

References for Further Study

  • “Trityl ethers of carbohydrates,” B. Helferich, Adv. Carbohydr. Chem., 3 (1948).

    Google Scholar 

  • “Applications in the carbohydrate field of reductive desulfurization by Raney nickel,” H. G. Fletcher, Jr. and N. K. Richtmyer, Adv. Carbohydr. Chem., 5 (1950).

    Google Scholar 

  • “The nitromethane and 2-nitroethanol syntheses,” J. C. Sowden, Adv. Carbohydr. Chem., 6 (1951).

    Google Scholar 

  • “Acetals and ketals of the tetritols, pentitols, and hexitols,” S. A. Barker, Adv. Carbohydr. Chem., 7 (1952).

    Google Scholar 

  • “The glycals,” B. Helferich, Adv. Carbohydr. Chem., 7 (1952).

    Google Scholar 

  • “Relative reactivities of hydroxyl groups of carbohydrates,” J. M. Sugihara, Adv. Carbohydr. Chem., 8 (1953).

    Google Scholar 

  • “Sulfonic esters of carbohydrates,” R. S. Tipson, Adv. Carbohydr. Chem., 8 (1953).

    Google Scholar 

  • “Glycosylamines,” G. P. Ellis and J. Honeyman, Adv. Carbohydr. Chem., 10 (1955).

    Google Scholar 

  • “The glycosyl halides and their derivatives,” L. J. Haynes and F. H. Newth, Adv. Carbo-hydr. Chem., 10 (1955).

    Google Scholar 

  • “Benzyl ethers of sugars,” C. M. McCloskey, Adv. Carbohydr. Chem, 12 (1957).

    Google Scholar 

  • “The carbonates and thiocarbonates,” L. Hough, J. E. Priddle, and R. S. Theobald, Adv. Carbohydr. Chem., 15 (1960).

    Google Scholar 

  • “Applications of trifluoroacetic anhydride in carbohydrate chemistry,” T. G. Bonner, Adv. Carbohydr. Chem., 16 (1961).

    Google Scholar 

  • “Glycosyl fluorides and azides,” E. Micheel and A. Klemer, Adv. Carbohydr. Chem., 16 (1961).

    Google Scholar 

  • “Developments in the chemistry of thio sugars,” D. Horton and D. H. Hutson, Adv. Carbohydr. Chem., 18 (1963).

    Google Scholar 

  • “Unsaturated sugars,” R. J. Ferrier, Adv. Carbohydr. Chem., 20 (1965).

    Google Scholar 

  • “Halogenated carbohydrates,” J. E. G. Barnett, Adv. Carbohydr. Chem., 22 (1967).

    Google Scholar 

  • “Sulfonic esters of carbohydrates. Part I,” D. H. Ball and F. W. Parrish, Adv. Carbohydr. Chem., 23 (1968).

    Google Scholar 

  • “Cyclic monosaccharides having nitrogen or sulfur in the ring,” H. Paulsen and K. Todt, Adv. Carbohydr. Chem., 23 (1968).

    Google Scholar 

  • “Deoxyhalogeno sugars,” W. A. Szarek, Adv. Carbohydr. Chem. Biochem., 32 (1973).

    Google Scholar 

  • “Dithioacetals of sugars,” J. D. Wander and D. Horton, Adv. Carbohydr. Chem. Biochem., 32 (1976).

    Google Scholar 

  • “Relative reactivities of hydroxyl groups in carbohydrates,” A. H. Haines, Adv. Carbohydr. Chem. Biochem., 33 (1976).

    Google Scholar 

  • “The chemistry of sucrose,” R. Khan, Adv. Carbohydr. Chem. Biochem., 33 (1976).

    Google Scholar 

  • “Cyclic acetals of the aldoses and aldosides,” A. N. DeBelder, Adv. Carbohydr. Chem. Biochem., 34 (1977).

    Google Scholar 

  • “The Koenigs-Knorr reaction,” K. Igarashi, Adv. Carbohydr. Chem. Biochem., 34 (1977).

    Google Scholar 

  • “Fluorinated carbohydrates,” A. A. E. Penglis, Adv. Carbohydr. Chem. Biochem., 38 (1981).

    Google Scholar 

  • “Sugar analogs having phosphorus in the hemiacetal ring,” H. Yamamoto and S. Inokawa, Adv. Carbohydr. Chem. Biochem., 42 (1984).

    Google Scholar 

  • “Chemistry and developments of fluorinated carbohydrates,” T. Tsuchiya, Adv. Carbohydr. Chem. Biochem., 48(1990)

    Google Scholar 

  • “Anomeric-oxygen activation for glycoside synthesis: the trichloroacetimidate method,” R. R. Schmidt and W. Kinzy, Adv. Carbohydr. Chem. Biochem., 50 (1994).

    Google Scholar 

  • “Synthetic methods for carbohydrates,” in ACS Symposium Series 39 (H. S. El Khadem, ed.) American Chemical Society, Washington, D.C. (1976).

    Google Scholar 

  • Carbohydrate Chemistry: Monosaccharides and Their Oligomers, H. S. El Khadem, Academic, New York (1988).

    Google Scholar 

  • “Trends in synthetic carbohydrate chemistry,” in ACS Symposium Series 386 (D. Horton, L. D. Hawkins, and G. J. McGarvey, eds.) American Chemical Society, Washington, D.C. (1989).

    Google Scholar 

  • Monosaccharides: Their Chemistry and Their Roles in Natural Products, P. M. Collins and R. J. Ferrier, John Wiley & Sons, New York (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robyt, J.F. (1998). Modifications. In: Essentials of Carbohydrate Chemistry. Springer Advanced Texts in Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1622-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1622-3_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7220-5

  • Online ISBN: 978-1-4612-1622-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics