Advertisement

Determinations

  • John F. Robyt
Part of the Springer Advanced Texts in Chemistry book series (SATC)

Abstract

The determination of the presence of carbohydrate in a sample is obtained by performing the Molisch test 1 (see section 3.4 in Chapter 3 for the chemistry involved in the Molisch test). The test is sensitive down to 10 pg/mL and is relatively broad but specific for all types of carbohydrates, with the exception of sugar alcohols, 2-deoxy sugars, and 2-amino-2-deoxy sugars or 2-acetamido-2-deoxy sugars.

Keywords

Glycosidic Linkage Carbohydrate Structure Periodate Oxidation Glucose Residue Monosaccharide Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    H. Molisch Monatsch. Chem., 7 (1886) 108–111.Google Scholar
  2. 2.
    W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 43 (1978) 2923–2926.CrossRefGoogle Scholar
  3. 3.
    E. K. Yau and J. K. Coward, Aldrichim. Acta, 21(4) (1988) 106–107.Google Scholar
  4. 4.
    R. L. Whistler and J. N. BeMiller, Methods Carbohydr. Chem., 1 (1962) 42–44.Google Scholar
  5. 5.
    R. Gauch, U. Leuenberger, and E. Baumgartner, J. Chromatog., 174 (1979) 195–200.CrossRefGoogle Scholar
  6. 6.
    A. Haug, B. Larsen, and O. Smidsrgd, Acta Chemica Scand., 20 (1966) 183–190.CrossRefGoogle Scholar
  7. 7.
    C. A. Wilham, B. H. Alexander, and A. Jeanes, Arch. Biochem. Biophys., 59 (1955) 61–68.CrossRefGoogle Scholar
  8. 8.
    S. C. Churms, in Handbook of Chromatography, Carbohydrates, Vol. 1, pp. 69–129 and pp. 175–187 (G. Zweig and J. Sherma, eds.) CRC, Boca Raton (1982).Google Scholar
  9. 9.
    M. Bounias, Anal. Biochem., 106 (1980) 291–295.CrossRefGoogle Scholar
  10. 10.
    H. Bouveng and B. Lindberg, Adv. Carbohydr. Chem., 15 (1960) 58–68.Google Scholar
  11. 11.
    S. Hakomori, J. Biochem., 55 (1964) 205–208.Google Scholar
  12. 12.
    G. G. S. Dutton, Adv. Carbohydr. Chem. Biochem., 30 (1974) 9–110.CrossRefGoogle Scholar
  13. 13.
    H. Bjomdal, C. G. Hellerquist, B. Lindberg, and S. Svensson, Angew. Chem. Internat. Ed., 9 (1970) 610–619.CrossRefGoogle Scholar
  14. 14.
    K. Stellner, H. Saito, and S. Hakomori, Arch. Biochem. Biophys., 155 (1973) 464–472.CrossRefGoogle Scholar
  15. 15.
    M. E. Slodki, R. E. England, R. D. Plattner, and W. E. Dick, Jr., Carbohydr. Res., 156 (1986) 199–206.CrossRefGoogle Scholar
  16. 16.
    R. Mukerjea, D. Kim, and J. E Robyt, Carbohydr. Res., 292 (1996) 11–20.Google Scholar
  17. 17.
    T. Ikenaka, J. Biochem.,54 (1963) 328–333.Google Scholar
  18. 18.
    P.A.J. Gorrrin Adv,Carbohydr.Chem,Biochem.38 (1981) 13–104CrossRefGoogle Scholar
  19. 19.
    H.Suzuki and E.J. Hehre,Arch.Biochem,BIophys.,104 (1964) 305–315.CrossRefGoogle Scholar
  20. 20.
    D.French,Biochem.J.,100 (1966) 2PGoogle Scholar
  21. 21.
    K.Kainuma and D. French,FEBSLett.,5 (1968) 257–261CrossRefGoogle Scholar
  22. 22.
    F.Kainuma and D.French,FEBS Lett.,6 (1969) 182–186.CrossRefGoogle Scholar
  23. 23.
    F.W.Parrish and W.J. Whelan,and S.Peat,Biochem.J.47 (1950) 1X.Google Scholar
  24. 24.
    W. Z. Hassid and R. M. McCready, J. Am. Chem. Soc., 65 (1943) 1157–1162.CrossRefGoogle Scholar
  25. 25.
    S. Peat, W. J. Whelan, and S. J. Pirt, Nature, 164 (1949) 499–500.CrossRefGoogle Scholar
  26. 26.
    G. J. Thomas, W. J. Whelan, and S. Peat, Biochem. J., 47 (1950) l x.Google Scholar
  27. 27.
    S. Peat, S. J. Pirt, and W. J. Whelan, J. Chem. Soc. (1952) 705–710.Google Scholar
  28. 28.
    O. Kjolberg and D. J. Manners, Biochem. J.,86 (1963) 258–264.Google Scholar
  29. 29.
    W. Banks and C. T. Greenwood, Arch. Biochem. Biophys., 117 (1966) 674–680.CrossRefGoogle Scholar
  30. 30.
    S. Hizukuri, Y. Takeda, M. Yasuda, and A. Suzuki, Carbohydr. Res., 94 (1981) 205–213.CrossRefGoogle Scholar
  31. 31.
    Y. Takeda, K. Shiraska, and S. Hizukuri, Carbohydr. Res., 132 (1984) 83–92.CrossRefGoogle Scholar
  32. 32.
    Y. Takeda, S. Hizukuri, C. Takeda, and A. Suzuki, Carbohydr. Res., 165 (1987) 139–145.CrossRefGoogle Scholar
  33. 33.
    S. Hizukuri, Carbohydr. Res., 141 (1985) 295–306.CrossRefGoogle Scholar
  34. 34.
    G. J. Walker and A. Pulkownik, Carbohydr. Res., 36 (1974) 53–59.CrossRefGoogle Scholar
  35. 35.
    G. O. Aspinall, E. L. Hirst, E. G. V. Percival, and I. R. Williamson, J. Chem. Soc., (1953) 3184–3188.Google Scholar
  36. 36.
    G. O. Aspinall, R. B. Rashbrook, and G. Kessler, J. Chem. Soc., (1958) 215–221.Google Scholar
  37. 37.
    B. J. Catley, J. F. Robyt, and W. J. Whelan, Biochem. J.,100 (1966) 5p.Google Scholar
  38. 38.
    B. J. Catley and W. J. Whelan, Arch. Biochem. Biophys., 143 (1971) 138–144.CrossRefGoogle Scholar
  39. 39.
    G. Carolan, B. J. Catley, and F. J. McDougal, Carbohydr. Res., 114 (1983) 237–243.CrossRefGoogle Scholar
  40. 40.
    H. J. Jennings and I. C. P. Smith, J. Am. Chem. Soc., 95 (1973) 606–608.CrossRefGoogle Scholar
  41. 41.
    K. Takeo, K. Hirose, and T. Kuge, Chem. Lett.,(1973) 1233–1236.Google Scholar
  42. 42.
    F. R. Seymour, R. D. Knapp, S. H. Bishop, and A. Jeanes, Carbohydr. Res., 68 (1979) 123–140.CrossRefGoogle Scholar
  43. 43.
    L. Hough, in Sucochemistry,pp.9–21, (J. L. Hickson, ed.) ACS Symposium Series 41, American Chemical Society, Washington, D.C. (1977).Google Scholar
  44. 44.
    R. Mukerjea and J. F. Robyt, unpublished data.Google Scholar
  45. 45.
    P. Colson, H. C. Jarrell, B. L. Lamberts, and I. C. P. Smith, Carbohydr. Res., 71 (1979) 265–272.CrossRefGoogle Scholar
  46. 46.
    P. Colson, H. J. Jennings, and I. C. P. Smith, J. Am. Chem. Soc.,96 (1974) 8081–8087.CrossRefGoogle Scholar
  47. 47.
    P. S. Chang and J. F. Robyt, J. Carbohydr. Chem., 15 (1996) 667–677.CrossRefGoogle Scholar
  48. 48.
    J. N. Zikopoulos, S. H. Eklund, and J. F. Robyt, Carbohydr. Res.,104 (1982) 245–251.CrossRefGoogle Scholar
  49. 49.
    J. B. Sumner and S. F. Howell, J. Bacteriol., 32 (1936) 227–237.Google Scholar
  50. 50.
    W. C. Boyd and R. M. Reguera, J. Immunol., 62 (1949) 333–339.Google Scholar
  51. 51.
    W. M. Watkins and W. T. J. Morgan, Nature, 169 (1952) 825–826.CrossRefGoogle Scholar
  52. 52.
    G. L. Nicolson, Int. Rev. Cytol., 39 (1974) 89–190.CrossRefGoogle Scholar
  53. 53.
    G. L. Nicolson, Biochim. Biophys. Acta, 457 (1976) 57–108; 458 (1976) 1–72.Google Scholar
  54. 54.
    K. Burridge, Methods Enzymol., 50 (1978) 54–64.CrossRefGoogle Scholar
  55. 55.
    M. Furlan, B. A. Perret, and E. A. Beck, Anal. Biochem.,96 (1979) 208–214.CrossRefGoogle Scholar
  56. 56.
    S. Narasimhan, J. R. Wilson, E. Martin, and H. Schachter, Can. J. Biochem., 57 (1979) 83–96.Google Scholar
  57. 57.
    K. Kornfeld, M. L. Reitman, and R. Kornfeld, J. Biol. Chem.,256 (1981) 6633–6640.Google Scholar
  58. 58.
    T. G. Pistole, Ann. Rev. Microbiol., 35 (1981) 85–112.CrossRefGoogle Scholar
  59. 59.
    P. Z. Allen, M. C. Connelly, and M. A. Apicella, Can. J. Microbiol., 26 (1980) 468–474.CrossRefGoogle Scholar
  60. 60.
    B. Anderson, N. Seno, P. Sampson, J. G. Riley, P. Hoffman, and K. Meyer, J. Biol. Chem., 239 (1964) 2716–2719.Google Scholar
  61. 61.
    R. G. Spiro and V. D. Bhoyroo, Fed. Proc. Fed. Amer. Soc. Exp. Biol., 30 (1971) 1223–1225.Google Scholar
  62. 62.
    R. G. Spiro Methods Enzymol. 28 (1972) 35–40.Google Scholar
  63. 63.
    S. Takasaki, T. Mizuochi, and A. Kobata, Methods Enzymol., 83 (1982) 263–268.CrossRefGoogle Scholar
  64. 64a.
    T. Muramatsu, Methods Enzymol., 50 (1978) 555–559;CrossRefGoogle Scholar
  65. 64b.
    A. Kobata, Methods Enzymol., 50 (1978) 560–574;CrossRefGoogle Scholar
  66. 64c.
    A. L. Tarentino, R. B. Trimble, and E Maley, Methods Enzymol., 50 (1978) 574–584.CrossRefGoogle Scholar
  67. 65.
    H. T. Sojar and O. P. Bahl, Methods Enzymol., 138 (1987) 341–344.CrossRefGoogle Scholar

References for Further Study

  1. “Methods in structural polysaccharides,” H. Bouvend and B. Lindberg, Adv. Carbohydr. Chem. Biochem. 15 (1960) 58–68.Google Scholar
  2. “Carbon-13 nuclear magnetic resonance spectroscopy of polysaccharides,” P. A. J. Gorin, Adv. Carbohydr. Chem. Biochem., 38 (1981) 13–104.Google Scholar
  3. “Enzymic analysis of polysaccharide structure”, B. V. McCleary and N. K. Matheson, Adv. Carbohydr. Chem. Biochem., 44 (1986) 147–276.Google Scholar
  4. Receptor-Specific Proteins: Plant and Animal Lectins, E. R. Gold and P. Balding, Excerpta Medica, Amsterdam (1975).Google Scholar
  5. The Lectins: Properties, Functions, and Applications in Biology and Medicine, I. E. Liener, N. Sharon, and I. J. Goldstein, eds., Academic, New York (1986).Google Scholar
  6. “Spectroscopic Methods in the Determination of Carbohydrate Structures,” A. S. Perlin and B. Casu, in The Polysaccharides, Vol. 1, Chap. 4, pp. 135–195, Academic, New York (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • John F. Robyt
    • 1
  1. 1.Laboratory of Carbohydrate Chemistry and Enzymology Department of Biochemistry and BiophysicsIowas State UniversityAmesUSA

Personalised recommendations