Mucosal Immunization for Induction of Tolerance to Autoantigens

  • Bao-Guo Xiao
  • Hans Link
Part of the Contemporary Immunology book series (CONTIM)


Mucosal immunology is one of the most rapidly developing and exciting fields of immunology. Mucosal immunization offers several important advantages over parenteral immunization, including higher efficacy to achieve both mucosal and systemic immunity, minimization of adverse effects, easy delivery, and inexpensiveness. Mucosal immunology has a history that dates back more than 2000 yr, and many of the important phenomena have been dealt with in two recent reviews (1,2). The modem concept was developed by the Russian scientist Alexandre Besredka in 1919. He showed the existence of a protective immune system functioning in the gut fairly independently of systemic immunity, which utilizes secretory IgA (sIgA) as the major effector substance. In addition to inducing local sIgA antibody secretion and cell-mediated immune responses, mucosal administration of antigens also results in a state of peripheral immunological tolerance in several experimental animal models. Figure 1 shows schematically the two major defense mechanisms in the mucosal membrane. This phenomenon is often referred to as “mucosal tolerance” and has been observed in the human fed (immunized) with several antigens including classical immunogens such as keyhole-limpet hemocyanin (KLH). In order to join forces in terms of basic and practical research, an International Society for Mucosal Immunology (SMI) has been organized to promote this important field (3).


Major Histocompatibility Complex Experimental Autoimmune Encephalomyelitis Major Histocompatibility Complex Class Myelin Basic Protein Nasal Administration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mestecky, J. and McGhee, J. R. (1989) Oral immunization: past and present, in New strategies for oral immunization. Current Topics in Microbiology and Immunology (Mestecky, J., and McGhee, J. R., eds.), vol. 146, Berlin: Springer-Verlag, pp. 3–11.Google Scholar
  2. 2.
    Bienenstock, J. (1991) A non-historical overview of mucosal immunology, in Frontiers of mucosal immunology. Proceedings of the Sixth International Congress of Mucosal Immunology (Tsuchita, M., Nagura, H., Hibi, T., and Moro, I., eds.), vol. 1. Amsterdam, Excerpta Medica/Elsevier, pp. XV–XVIII.Google Scholar
  3. 3.
    Brandtzaeg, P. (1995) The SMI—An international society for mucosal immunology. Immunologist 3, 67–69.Google Scholar
  4. 4.
    Miller, A., Lider, O., Abramsky, O., and Weiner, H. L. (1994) Oral administration of myelin basic protein in neonates primes for immune responses and enhances experimental autoimmune encephalomyelitis in adult animals. Eur. J. Immunol. 24, 1026–1032.PubMedCrossRefGoogle Scholar
  5. 5.
    Hanson, D. G. (1981) Ontogeny of orally induced tolerance to soluble proteins in mice. I. Priming and tolerance in newborns. J. Immunol. 127, 1518–1524.PubMedGoogle Scholar
  6. 6.
    Mayer, L. and Shlien, R. (1987) Evidence for function of la molecules on gut epithelial cells in man. J. Exp. Med. 166, 1471–1483.PubMedCrossRefGoogle Scholar
  7. 7.
    Kagnoff, M. F. (1996) Mucosal immunology: new frontiers. Immunol. Today 17, 57–60.PubMedCrossRefGoogle Scholar
  8. 8.
    Holt, P. G. (1994) Immunoprophylaxis of atopy: light at the end of the tunnel? Immunol. Today 15, 484–489.PubMedCrossRefGoogle Scholar
  9. 9.
    Wells, H. G. (1991) Studies on the chemistry of anaphylaxis (III). Experiments with isolated proteins, especially those of the hen’s egg. J. Infect. Dis. 9, 147–171.CrossRefGoogle Scholar
  10. 10.
    Chase, M. W. (1946) Inhibition of experimental drug allergy by prior feeding of the sensitized agent. Proc. Soc. Exp. Biol. Med. 61, 257–259.PubMedGoogle Scholar
  11. 11.
    Meyer, A. L., Benson, J. M., Gienapp, I. E., Cox, K. L., and Whitacre, C. C. (1996) Suppression of murine chronic relapsing experimental autoimmune encephalomy-elitis by the oral administration of myelin basic protein. J. Immunol. 157, 4230–4238.PubMedGoogle Scholar
  12. 12.
    Hirabayashi, Y., Kurata, H., Funato, H., Nagamine, T., Aizawa, C., Tamura, S., et al. (1990) Comparison of intranasal inoculation of influenza HA vaccine combined with cholera toxin B subunit with oral or parenteral vaccination. Vaccine 8, 243–248.PubMedCrossRefGoogle Scholar
  13. 13.
    Ma, C. G., Zhang, G. X., Xiao, B. G., Wang, Z. Y., Link, J., Olsson, T. et al. (1996) Mucosal tolerance to experimental autoimmune myasthenia gravis is associated with down-regulation of AChR-specific IFN-γ-expressing Thl-like cells and up-regulation of TGF-β mRNA in mononuclear cells. Ann. NY Acad. Sci. 778, 273–287.PubMedCrossRefGoogle Scholar
  14. 14.
    Metzler, B. and Wraith, D. C. (1992) Inhibition of experimental autoimmune encephalomyelitis by inhalation but not oral administration of the encephalitogenic peptide: influence of MHC binding affinity. Int. Immunol. 5, 1159–1165.CrossRefGoogle Scholar
  15. 15.
    Dresser, D. W. (1962) Specific inhibition of antibody production. I. Protein overloading paralysis. Immunology 5, 161–168.PubMedGoogle Scholar
  16. 16.
    Javed, N. H., Gienapp, I. E., Cox, K. L., Whitacre, C. C. (1995) Exquisite peptide specificity of oral tolerance in experimental auroimmune encephalomyelitis. J. Immunol. 155, 1599–1605.PubMedGoogle Scholar
  17. 17.
    Miller, A., Lider, O., Al-Sabbagh, A., and Weiner, H. L. (1992) Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. V. Hierarchy of suppression by myelin basic protein from different species. J. Neuroimmunol. 39, 243–250.PubMedCrossRefGoogle Scholar
  18. 18.
    Higgins, P. J. and Weiner, H. L. (1988) Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein and its fragments. J. Immunol. 140, 440–445.PubMedGoogle Scholar
  19. 19.
    Bitar, D. M. and Whitacre, C. C. (1988) Suppression ol experimental autoimmune encephalomyelitis by the oral administration of myelin basic protein. Cell Immunol. 11, 364–370.CrossRefGoogle Scholar
  20. 20.
    Liu, G. Y. and Wraith, D. C. (1995) Affinity for class II MHC determines the extent to which soluble peptides tolerize autoreactive T cells in naive and primed adult mice-implications for autoimmunity. Int. Immunol. 7, 1255–1263.PubMedCrossRefGoogle Scholar
  21. 21.
    Joosten, I., Wauben, M. H. M., Holewijn, M. C., Reske, K., Pedersen, F. L., Roosenboommn, C. F. P., et al. (1994) Direct binding of autoimmune disease related T cell epitopes to purified Lewis rat MHC class II molecules. Int. Immunol. 6, 751–759.PubMedCrossRefGoogle Scholar
  22. 22.
    Evavold, B. D., Sloan, L. J., and Allen, P. M. (1993) Tickling the TCR: selective T-cell functions stimulated by altered peptide ligands. Immunol. Today 14, 602–609.PubMedCrossRefGoogle Scholar
  23. 23.
    Windhagen, A., Scholz, C., Hollsberg, P., Fukaura, H., Sette, A., and Hafler, D. A. (1995) Modulation of cytokine patterns of human autoreactive T cell clones by a single amino acid substitution of their peptide ligand. Immunity 2, 373–380.PubMedCrossRefGoogle Scholar
  24. 24.
    Karin, N., Mitchell, D. J., Brocke, S., Ling, N., and Steinman, L. (1994) Reversal of experimental autoimmune encephalomyelitis by a soluble peptide variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon gamma and tumor necrosis factor alpha production. J. Exp. Med. 180, 2227–2237.PubMedCrossRefGoogle Scholar
  25. 25.
    Adorini, L. and Nagy, Z. A. (1990) Peptide competition for antigen presentation. Immunol. Today 11, 21–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Guery, J. C., Sette, A., Leighton, J., Dragomir, A., and Adorini, L. (1992) Selective immunosuppression by administration of major histocompatibility complex (MHC) class 11-binding peptides. I. Evidence for in vivo MHC blockade preventing T cell activation. J. Exp. Med. 175, 1345–1352.PubMedCrossRefGoogle Scholar
  27. 27.
    Alexander, J., Ruppert, J., Snoke, K., and Sette, A. (1994) TCR antagonism and T cell tolerance can be independently induced in a DR-restricted, hemagglutinin-specific T cell clone. Int. Immunol. 6, 363–367.PubMedCrossRefGoogle Scholar
  28. 28.
    Franco, A., Southwood, S., Arrhenius, T., Kuchroo, V. K., Grey, H. M., Sette, A., et al. (1994) T-cell receptor antagonist peptides are highly effective inhibitors of experimental allergic encephalomyelitis. Eur. J. Immunol. 24, 940–946.PubMedCrossRefGoogle Scholar
  29. 29.
    Sakaguchi, S., Toda, M., Asano, M., Itoh, M., Moores, S. S., and Sakaguchi, N. (1996) T cell-mediated maintenance of nature self-tolerance: its breakdown as a possible cause of various autoimmune diseases. J. Autoimmun. 9, 211–220.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang, Z. Y., He, B., Qiao, J., and Link, H. (1995) Suppression of experimental autoimmune myasthenia gravis and experimental allergic encephalomyelitis by oral administration of acetylcholine receptor and myelin basic protein: double tolerance. J. Neuroimmunol. 63, 79–86.PubMedCrossRefGoogle Scholar
  31. 31.
    Shi, F. D., Bai, X. F., Xiao, B. G., van der Meide, P. H., and Link, H. (1998) Nasal administration of multiple antigens suppresses experimental autoimmune myasthenia gravis. encephalomyelitis and neuritis. J. Neurol. Sci. 155, 1–12.PubMedCrossRefGoogle Scholar
  32. 32.
    Miller, A., Lider, O., Roberts, A. B., Sporn, M. B., and Weiner, H. L. (1992) Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor-β after antigen-specific triggering. Proc. Natl. Acad. Sci. USA 89, 421–425.PubMedCrossRefGoogle Scholar
  33. 33.
    Lider, O., Santos, L. M. B., Lee, C. S. Y., Higgins, P. J., and Weiner, H. L. (1989) Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein II. Suppression of disease and in vitro immune responses is mediated by antigen-specific CD8 T lymphocytes. J. Immunol. 142, 748–752.PubMedGoogle Scholar
  34. 34.
    Wildner, G., Hunig, T., and Thurau, S. R. (1996) Orally induced. Peptide-specific γ/δ TCR+ cell suppress experimental autoimmune uveitis. Eur. J. Immunol. 26, 2140–2148.PubMedCrossRefGoogle Scholar
  35. 35.
    Caspi, R. R., Kuwabara, T., and Nussenblatt, R. B. (1988) Characterization of a suppressor cell line which downgrades experimental autoimmune uveoretinitis in the rat. J. Immunol. 140, 2579–2584.PubMedGoogle Scholar
  36. 36.
    Chen, Y., Inobe, J., and Weiner, H. L. (1995) Induction of oral tolerance to myelin basic protein in CD8-depleted mice: both CD4+ and CD8+ cells mediated active suppression. J. Immunol. 155, 910–916.PubMedGoogle Scholar
  37. 37.
    Chen, Y., Kuchroo, V. K., Inobe, J., Hafler, D. A., and Weiner, H. L. (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265, 1237–1240.PubMedCrossRefGoogle Scholar
  38. 38.
    Fuller, K. A., Pearl, D., and Whitacre, C. C. (1990) Oral tolerance in experimental autoimmune encephalomyelitis: serum and salivary antibody responses. J. Neuro-immunol. 28, 15–26.Google Scholar
  39. 39.
    Miller, A., Lider, O., and Weiner, H. L. (1991) Antigen-driven bystander suppression after oral administration of antigens. J. Exp. Med. 174, 791–798.PubMedCrossRefGoogle Scholar
  40. 40.
    Lehmann, P., Forsthuber, T., Miller, A., and Sercarz, E. E. (1992) Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358, 155–157.PubMedCrossRefGoogle Scholar
  41. 41.
    Tisch, R., Yang, X. D., Singer, S. M., Liblau, R. S., Fugger, L., and McDevitt, H. O. (1993) Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice. Nature 366, 72–75.PubMedCrossRefGoogle Scholar
  42. 42.
    Lu C. Z. Fredrikson S. Xiao B. G. and Link H. 1993 Interleukin-2 secreting cells in multiple sclerosis and controls. J. Neurol. Sci. 120. 99–106PubMedCrossRefGoogle Scholar
  43. 43.
    Al-Sabbagh, A., Miller, A., Santos, L. M. B., and Weiner, H. L. (1994) Antigen-driven tissue-specific suppression following oral tolerance: orally administered myelin basic protein suppresses proteolipid protein-induced experimental autoimmune encephalomyelitis in the SJL mouse. Eur. J. Immunol. 24, 2104–2109.PubMedCrossRefGoogle Scholar
  44. 44.
    Weiner, H. L., Friedman, A., Miller, A., Khoury, S. J., Al-Sabbagh, A., Santos, L. M. B., et al. (1994) Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu. Rev. Immunol. 12, 809–837.PubMedCrossRefGoogle Scholar
  45. 45.
    Schluesener, H. J. and Wekerle, H. (1985) Autoaggressive T lymphocyte lines recognizing the encephalitogenic region of myelin basic protein: in vitro selection from unprimed rat T lymphocyte populations. J. Immunol. 135, 3128–3133.PubMedGoogle Scholar
  46. 46.
    Paul, W. E. and Seder, R. A. (1994) Lymphocyte responses and cytokines. Cell 76, 241–251.PubMedCrossRefGoogle Scholar
  47. 47.
    Khoury, S. J., Hancock, W. W., and Weiner, H. L. (1992) Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis is associated with downregulation of inflammatory cytokines and differential upregulation of tranforming growth factor-β, interleukin-4 and prostaglandin E expression in the brain. J. Exp. Med. 176, 1355–1364.PubMedCrossRefGoogle Scholar
  48. 48.
    Chen, Y., Inobe, J. I., Marks, R., Gonnella, P., Kuchroo, V. K., and Weiner, H. L. (1995) Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 376, 177–180.PubMedCrossRefGoogle Scholar
  49. 49.
    Bai, X. F., Shi, F. D., Xiao, B. G., Li, H. L., van der Meide, P. H., and Link, H. (1997) Nasal administration of myelin basic protein prevents relapsing experimental autoimmune encephalomyelitis in DA rats by activating regulatory cells expressing IL-4 and TGF-β mRNA. J. Neuroimmunol. 80, 65–75.CrossRefGoogle Scholar
  50. 50.
    Wang, Z. Y., Qiao, J., and Link, H. (1993) Suppression of experimental autoimmune myasthenia gravis by oral administration of acetylcholine receptor. J. Neuroimmunol. 44, 209–214.PubMedCrossRefGoogle Scholar
  51. 51.
    Okumura, S., Mclntosh, K., and Drachman, D. B. (1994) Oral administration of acetylcholine receptor: effects on experimental myasthenia gravis. Ann. Neurol. 36, 704–713.PubMedCrossRefGoogle Scholar
  52. 52.
    Wang, Z. Y., Huang, J., Olsson, T., He, B., and Link, H. (1995) B cell responses to acetylcholine receptor in rats orally tolerized against experimental autoimmune myasthenia gravis. J. Neurol. Sci. 128, 167–174.PubMedCrossRefGoogle Scholar
  53. 53.
    Ma, C. G., Zhang, G. X., Xiao, B. G., Link, J., Olsson, T., and Link, H. (1995) Suppression of experimental autoimmune myasthenia gravis by nasal administration of acetylcholine receptor. J. Neuroimmunol. 58, 51–60.PubMedCrossRefGoogle Scholar
  54. 54.
    Wang, Z. Y., Link, H., Ljungdahl, A., Hojeberg, B., Link, J., He, B., et al. (1994) Induction of interferon-γ, interleukin-4 and transforming growth factor-β in rats orally tolerized against experimental autoimmune myasthenia gravis. Cell Immunol. 157, 353–368.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhou, L. P., Zhu, Jie., Deng, G. M., Levi, M., Wahren, B., Diab, A., et al. Treatment with bovine P2 protein peptide 57-81 by nasal route is effective in EAN. J. Neuroimmunol., in press.Google Scholar
  56. 56.
    Nussenblatt, R. B., Caspi, R. R., Mahdi, R. Chan, C. C., Roberge, F., Lider, O., et al. (1990) Inhibition of S-Ag induced experimental autoimmune uveoretinitis by oral induction of tolerance with S-Ag. J. Immunol. 144, 1689–1695.PubMedGoogle Scholar
  57. 57.
    Gregerson, D. S., Obritsch, W. F., and Donoso, L. A. (1993) Oral tolerance in experimental autoimmune uveoretinitis: distinct mechanisms of resistance are induced by low versus high-dose feeding protocols. J. Immunol. 151, 5751–5761.PubMedGoogle Scholar
  58. 58.
    Caspi, R. R., Stiff, L. R., Morawetz, R., Miller-Rivero, N. E., Chan, C. C., Wiggert, B., et al., (1996) Cytokine-dependent modulation of oral tolerance in a murine model of autoimmune uveitis. Ann. NY Acad. Sci. 778, 315–324.PubMedCrossRefGoogle Scholar
  59. 59.
    Singh, V. K., Anand, R., Sharma, K., and Agarwal, S. S. (1996) Suppression of experimental autoimmune uveitis in Lewis rats by oral administration of recombinant Escherichia coli expressing retinal S-antigen. Cell Immunol. 172, 158–162.PubMedCrossRefGoogle Scholar
  60. 60.
    Dick, A. D., Cheng, Y. F., McKinnon, A., Liversidge, J., and Forrester, J. V. (1993) Nasal administration of retinal antigens suppresses the inflammatory response in experimental allergic uveoretinitis. Brit. J. Ophthalmol. 77, 171–175.CrossRefGoogle Scholar
  61. 61.
    Dick, A. D., Cheng, Y. F., Liversidge, J., and Forrester, J. V. (1994) Intranasal administration of retinal antigens suppresses retinal antigen-induced experimental autoimmune uveoretinitis. Immunology 82, 625–631.PubMedGoogle Scholar
  62. 62.
    Shizuru, A., Edwards-Taylor, C., Banks, B. A., Gregory, A. K., and Fathman, C. G. (1988) Immunotherapy of the NOD mouse: treatment with an antibody to T-helper lymphocytes. Science 240, 659–662.PubMedCrossRefGoogle Scholar
  63. 63.
    Liblau, R. S., Singer, S. M., and McDevitt, H. O. (1995) Th1 and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol. Today 16, 34–38.PubMedCrossRefGoogle Scholar
  64. 64.
    Maron, R., Blogg, N. S., Polanski, M., Hancock, W., and Weiner, H. L. (1996) Oral tolerance to insulin and the insulin B-chain. Ann. NY Acad. Sci. 778, 347–357.CrossRefGoogle Scholar
  65. 65.
    Daniel, D. and Wegmann, D. R. (1996) Protection of nonobese diabetic mice from diabetes by intranasal or subcutaneous administration of insulin peptide B-(9-23). Proc. Natl. Acad. Sci. USA 93, 956–960.PubMedCrossRefGoogle Scholar
  66. 66.
    Crisa, L., Mordes, P., and Rossini, A. A. (1992) Autoimmune diabetes mellitus in the BB rat. Diabetes Metab. Rev. 8, 4–37.PubMedCrossRefGoogle Scholar
  67. 67.
    Mordes, J. P., Schirf, B., Roipko, D., Greiner, D. L., Weiner, H. L., Nelson, P., et al. (1996) Oral insulin does not prevent insulin-dependent diabetes mellitus in BB rats. Ann. NY Acad. Sci. 778, 418–421.PubMedCrossRefGoogle Scholar
  68. 68.
    Zhang, Z. J., Lee, C. S. Y., Lider, O., and Weiner, H. L. (1990) Suppression of adjuvant arthritis in Lewis rats by oral administration of type II collagen. J. Immunol. 145, 2489–2493.PubMedGoogle Scholar
  69. 69.
    Prakken, B. J., van der Zee, R., Anderton, S. M., van Kooten, P., Kuis, W., and van Eden, W. (1996) Tolerance to an arthritogenic T-cell epitope of hsp65 and the regulation of experimental arthritis. Ann. NY Acad. Sci. 778, 425–426.PubMedCrossRefGoogle Scholar
  70. 70.
    Staines, N. A., Harper, N., Ward, F. J., Thompson, H. S. G., and Bansal, S. (1996) Arthritis: animal models of oral tolerance. Ann. NY Acad. Sci. 778, 297–305.PubMedCrossRefGoogle Scholar
  71. 71.
    Staines, N. A., Harper, N., Ward, F. J., Malmstrorn, V., Holmdahl, R., and Bansal, S. (1996) Mucosal tolerance and suppression of collagen-induced arthritis (CIA) induced by nasal inhalation of synthetic peptide 184–198 of bovine type II collagen (Cll) expressing a dominant T cell epitope. Clin. Exp. Immunol. 103, 368–375.PubMedCrossRefGoogle Scholar
  72. 72.
    Brod, S. A., Al-Sabbagh, A., Sobel, R. A., Hafler, D. A., and Weiner, H. L. (1991) Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin antigens. IV. Suppression of chronic relapsing disease in the Lewis rat and strain 13 guinea pig. Ann. Neurol. 29, 615–622.PubMedCrossRefGoogle Scholar
  73. 73.
    Drachman, D. B., Okumura, S., Adams, R. N., and Mclntosh, K. R.. (1996) Oral tolerance in my asthenia gravis. Ann. NY Acad. Sci. 778, 258–272.PubMedCrossRefGoogle Scholar
  74. 74.
    Shi, F. D., Bai, X. F., Li, H. L., Huang, Y. M., van der Meide, P. H., and Link, H. (1998) Nasal tolerance in experimental autoimmune myasthenia gravis (EAMG): induction of protective tolerance in primed animals. Clin. Exp. Immunol. 111, 506–512.PubMedCrossRefGoogle Scholar
  75. 75.
    Nelson, P. A., Akselband, Y., Dearborn, S. M., Al-Sabbagh, A., Tian, Z. J., Gonnella, P. A., et al. (1996) Effect of oral beta interferon on subsequent immune responsiveness. Ann. NY Acad. Sci. 778, 145–155.PubMedCrossRefGoogle Scholar
  76. 76.
    Sun J. B. Holmgren C. and Czerkinsky C. 1994 Cholera toxin B subunit an efficient transmucosal carrier-delivery system for induction of peripheral immulogical tolerance. Proc. Natl. Acad. Sci. USA 91 10795–10799PubMedCrossRefGoogle Scholar
  77. 77.
    Weiner H. L. 1994 Oral tolerance. Proc. Natl. Acad. Sci. USA 91 10762–10765PubMedCrossRefGoogle Scholar
  78. 78.
    Gimsa, U., Sieper, J., Braun, J., and Mitchison, N. A. (1997) Type 11 collagen serology: a guide to clinical responsiveness to oral tolerance? Rheumatol. Int. 16, 237–240.PubMedCrossRefGoogle Scholar
  79. 79.
    Fukaura, H., Kent, S. C., Pietrusewicz, M. J., Khoury, S. J., Weiner, H. L., and Hafler, D. A. (1996) Antigen-specific TGF-βI secretion with bovine myelin oral tolerization in multiple sclerosis. Ann.. NY. Acad Sci. 778, 251–257.PubMedCrossRefGoogle Scholar
  80. 80.
    Sun, J. B. (1993) Autoreactive T and B cells in nervous system diseases. Acta Neurol. Scand. 87(Suppl. 142), 1–56.Google Scholar
  81. 81.
    Link, H., Sun, J. B., Wang, Z. Y., Xu, Z., Love, A., Fredrikson, S., et al. (1992) Virus-reactive and autoreactive T cells are accumulated in cerebrospinal fluid in multiple sclerosis. J. Neuroimmunol. 38, 63–73.PubMedCrossRefGoogle Scholar
  82. 82.
    McFarland, H. F. (1996) Complexities in the treatment of autoimmune disease. Science 274, 2037–2038.PubMedCrossRefGoogle Scholar
  83. 83.
    Blanas, E., Carbone, F. R., Allison, J., Miller, J. F. A. P., and Heath, W. R. (1996) Induction of autoimmune diabetes by oral administration of autoantigen. Science 274, 1707–1709.PubMedCrossRefGoogle Scholar
  84. 84.
    Genain, C. P., Abel, K. Belmar, N., Villinger, F., Rosenberg, D. P., Linington, C., et al. (1996) Late complications of immune deviation therapy in a nonhuman primate. Science 274, 2054–2057.PubMedCrossRefGoogle Scholar
  85. 85.
    Vandenbark, A. A., Hashim, G., and Offner, H. (1989) Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature 341, 541–544.PubMedCrossRefGoogle Scholar
  86. 86.
    Howell, M. D., Winters, S. T., Olee, T., Powell, H. C., Carlo, D. J., and Brostoff, S. W. (1989) Vaccination against experimental allergic encephalomyelitis with T cell receptor peptides. Science 246, 668–670.PubMedCrossRefGoogle Scholar
  87. 87.
    Miller, A., Al-Sabbagh, A., Santos, L. M. B., Das, M. P., and Weiner, H. L. (1993) Epitopes of myelin basic protein that trigger TGF-β release after oral tolerization are distinct from encephalitogenic epitopes and mediate epitope-driven bystander suppression. J. Immunol. 151, 7307–7315.PubMedGoogle Scholar
  88. 88.
    Khare, S. D., Krco, C. J., Pawelski, J. R., Griffiths, M. M., Luthra, H. S., and David, C. S. (1994) Oral administration of human collagen peptide 250–270 suppresses collagen-induced arthritis in DBA/I mice by inhibiting a Th1 response. Arth. Rheum. 37(Suppl.), S398.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Bao-Guo Xiao
  • Hans Link

There are no affiliations available

Personalised recommendations