Lignin Peroxidase Production by Streptomyces viridosporus T7A

Use of Corn Oil as a Carbon Source
  • Leda M. F. Gottschalk
  • Jacyara M. B. Macedo
  • Elba P. S. Bon
Part of the Applied Biochemistry and Biotechnology book series (ABAB)


Lignin peroxidase (LiP) production cost should be reduced to justify its use in the control of environmental pollution. In this work, we studied the enzyme production by Streptomyces viridosporus T7A using glucose or corn oil as a carbon source having 0.65% yeast extract as a nitrogen source. Enzyme activity, observed using either 0.65% glucose or corn oil at 0.1, 0.5, and 1.0% concentration, was 300,150,300, and 200 UJL, respectively. Although higher enzyme activity was obtained in both media containing 0.65% glucose and 0.5% corn oil, the use of corn oil resulted in a better LiP stability. When combined carbon sources were used, higher values of enzyme activity (360, 350, and 225 UJL) were observed in media with 0.65% glucose and supplemented with 0.1,0.5, and 1.0% corn oil, respectively. Although the presence of both glucose and 0.5% corn oil is favorable for LiP production, satisfactory results in terms of enzyme production and stability could be also observed using 0.5% corn oil as a sole carbon source, which may lead to reduced production costs of the LiP enzyme.

Index Entries

Streptomyces viridosporus Lignin peroxidase enzyme production corn oil medium optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eriksson, K.-E. (1993), J Biotechnol. 30, 149–158.CrossRefGoogle Scholar
  2. 2.
    Schoemaker, H. E. and Leisola, M. S. A. (1990), J Biotechnol. 13, 101–109.CrossRefGoogle Scholar
  3. 3.
    Tien, M. and Kirk, T. K. (1983), Burds. Science 221, 661–663.CrossRefGoogle Scholar
  4. 4.
    Ramachandra, M., Crawford, D. L., and Hertel, G. (1988), Appl. Environ. Microbiol. 54, 3057–3063.Google Scholar
  5. 5.
    Odier, E. and Artaud, I. (1992), in Microbial Degradation of Natural Products, Winkelmann, G., ed., VCH, Germany, pp. 161–191.Google Scholar
  6. 6.
    Burdsall, H. H. and Eslyn, W. E. (1974), Mycotaxon. 1, 123–133.Google Scholar
  7. 7.
    Farrel, R. L. (1987), NY Acad. Sci. 501, 150–158.CrossRefGoogle Scholar
  8. 8.
    Crawford, D. L. (1978), Appl. Environ. Microbiol. 35, 1041–1045.Google Scholar
  9. 9.
    Crawford, D. L., Barder, M. J., Pometto, A. L., III, and Crawford, R. L. (1982), Arch. Microbiol. 131, 140–145.CrossRefGoogle Scholar
  10. 10.
    Iqbal, M., Mercer, D. K., Miller, P. G. G., and McCarthy, A. J. (1994), Microbiology 140, 1457–1465.CrossRefGoogle Scholar
  11. 11.
    Mercer, D. K., Iqbal, M., Miller, P. G. G., and McCarthy, A. J. (1996), Appl. Environ. Microbiol. 62, 2186–2190.Google Scholar
  12. 12.
    Zimmerman, W. (1990), J Biotechnol. 13, 119–130.CrossRefGoogle Scholar
  13. 13.
    Mileski, G. J., Bumpus, J. A., Jurek, M. A., and Aust, S. D. (1988), Appl. Environ. Microbiol. 54, 2885–2889.Google Scholar
  14. 14.
    Winter, B., Fiechter, A., and Zimmerman, W. (1991), Appl. Environ. Microbiol. 57, 2858–2863.Google Scholar
  15. 15.
    Haemmerli, S. D., Leisola, M. S. A., and Fiechter, A. (1986), FEMS Microbiol. Lett. 35, 33–36.CrossRefGoogle Scholar
  16. 16.
    Spiker, J. K., Crawford, D. L., and Thiel, E. C. (1992), Appl. Environ. Microbiol. 37, 518–523.Google Scholar
  17. 17.
    Pasti-Grigsby, M. B., Paszczynski, A., Goszczynski, S., Crawford, D. L., and Crawford, R. L. (1992), Appl. Environ. Microbiol. 58, 3605–3613.Google Scholar
  18. 18.
    Hernandezperez, G., Goma, G., and Rois, J. L. (1997), Biotechnol. Lett. 19, 285–289.CrossRefGoogle Scholar
  19. 19.
    Gauger, W. K., MacDonald, J. M., Adrian, N. R., Matthees, D. P., and Walgenbach, D. D. (1986), Arch. Environ. Microbiol. 15, 137–141.Google Scholar
  20. 20.
    Gunner, H. B. and Zuckman, B. M. (1968), Nature (London) 217, 1183–1184.CrossRefGoogle Scholar
  21. 21.
    Zerbini, J. E. (1994), M. Sc Thesis, Coppe, UFRJ, Rio de Janeiro, Brasil.Google Scholar
  22. 22.
    Sztajer, H., Maliszewska, I., and Wieczorek, J. (1988), Enzyme Microbiol. Technol. 10, 492–497.CrossRefGoogle Scholar
  23. 23.
    Bormann, C., Nikoleit, K., Potgeter, M., Tesch, C., Sommer, P., and Goetz, F. (1993), Decherna. Monographies 237–247.Google Scholar
  24. 24.
    Park, Y. S., Monose, I., Tsunoda, K., and Okabe, M. (1994), Appl. Microbiol. Biotechnol. 40, 773–779.CrossRefGoogle Scholar
  25. 25.
    Ettler, P. (1987), Acta Biotechnol. 7, 3–8.CrossRefGoogle Scholar
  26. 26.
    Hopwood, D. A., Bibb, M. B., Chater, K. F., Kieser, T., Bruton, C. J., Kieser, H. M., Lydiate, D. J., Smith, C. P., Ward, J. M., and Schrempf, H. (1985), in Genetic Manipulation of Streptomyces: A Laboratory Manual, The John Innes Foundation, Norwich, CT, Chapter 1, pp. 3–5.Google Scholar
  27. 27.
    McCarthy, A. J. and Broda, P. (1984), J Gen. Microbiol. 130, 2905–2913.Google Scholar
  28. 28.
    Pometto, A. L., III and Crawford, D. L. (1986), Appl. Environ. Microbiol. 51, 171–179.Google Scholar
  29. 29.
    Ishida, A., Futamura, N., and Matsusaka, T. (1987), J Gen. Appl. Microbiol. 33, 27–32.CrossRefGoogle Scholar
  30. 30.
    Pasti, M. B., Hagen, S. R., Korus, R. A., and Crawford, D. L. (1991), Appl. Microbiol. Biotechnol. 34, 661–667.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Leda M. F. Gottschalk
    • 1
  • Jacyara M. B. Macedo
    • 1
    • 2
  • Elba P. S. Bon
    • 1
  1. 1.Departamento de Bioquímica, IQ, CTUniversidade Federal do Rio de JaneiroBrazilUSA
  2. 2.Departamento de Bioquímica, IBRAGUniversidade do Estado do Rio de JaneiroBrazilUSA

Personalised recommendations