Advertisement

Performance of Fibrous Bed Bioreactor for Treating Odorous Gas

Scientific Note
  • Hong Chua
  • Xiang Z. Li
  • Peter H. F. Yu
  • Chung Y. Tam
  • Yu L. Huang
  • Shang T. Yang
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

A fibrous bed bioreactor was used for treatment of odorous volatile fatty acid (VFA). The effect of gaseous VFA (acetic, propionic, and butyric acids) mass loading on the bioreactor performance was investigated. The VFA degrading microbial culture was selected from activated sludge by the three VF As using a shake-flask culture. The selected microorganisms were then immobilized in a biofilter using cotton fabric as packing material. In the biofiltration experiment, the inlet gas flow rates ranged from 1 to 4 L/min, the total VFA concentrations ranged from 0.10 to 0.43 g/m3, and the resulting total mass loadings of VFA studied ranged from 9.7 to 104.3 g/m3/h. At total mass loading of 104.3 g/m3/h, the VFA removal efficiency was 87.7%. Higher removal efficiencies (>90%) were achieved at mass loadings below 50.3 g/m3/h.

Index Entries

Biofiltration odor control VFA fibrous bed bioreactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Williams, T. O. and Miller, F. C. (1992), BioCycle 33(10), 72–78.Google Scholar
  2. 2.
    Tanaka, H., Kuroda, K., and Yonaga, M. (1992), Anim. Sci. Technol. 63(1), 54–59.Google Scholar
  3. 3.
    Lau, A. K., Bruce, M. P., and Chase, R. J. (1996), J Environ. Sci. Health, A 31(9), 2247–2273.CrossRefGoogle Scholar
  4. 4.
    Bohn, H. (1992), Chem. Eng. Prog. 88(4), 34–40.Google Scholar
  5. 5.
    Ottengraf, S. P. P. (1986), in Biotechnology, vol. 8, Rehm, H. J. and Reed, G., eds., VCH Verlagsgesellchaft, Weinheim, Germany, pp. 426–452.Google Scholar
  6. 6.
    Furusawa, N., Togashi, I., Mirai, M., Shoda, M., and Kubota, H. (1984), J Ferment. Technol. 62(6), 589–594.Google Scholar
  7. 7.
    Tang, H. M., Hwang, S. J., and Hwang, S. C. (1996), J Air Waste Manage. Assoc. 46, 349–354.Google Scholar
  8. 8.
    Weckhuysen, B., Vriens, L., and Verachtert, H. (1994), Appl. Microbiol. Biotechnol. 42, 147–152.CrossRefGoogle Scholar
  9. 9.
    Leson, G. and Winer, A. M. (1991), J Air Waste Manage. Assoc. 41, 1045–1054.CrossRefGoogle Scholar
  10. 10.
    Yang, S. T., Huang, Y., and Hong, G. (1995), Biotechnol. Bioeng. 45, 379–386.CrossRefGoogle Scholar
  11. 11.
    Silva, E. M. and Yang, S. T. (1995), J Biotechnol. 41, 59–70.CrossRefGoogle Scholar
  12. 12.
    Yang, S. T. and Shu, C. H. (1996), Biotechnol. Prog. 12, 449–456.CrossRefGoogle Scholar
  13. 13.
    Shim, H. (1997), PhD dissertation, The Ohio State University, OH.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Hong Chua
    • 1
  • Xiang Z. Li
    • 1
  • Peter H. F. Yu
    • 2
  • Chung Y. Tam
    • 1
  • Yu L. Huang
    • 3
  • Shang T. Yang
    • 3
  1. 1.Departments of Civil and Structural EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
  2. 2.Departments of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung HomHong Kong
  3. 3.Department of Chemical EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations