Kinetics of Xylitol Fermentation by Candida guilliermondii Grown on Rice Straw Hemicellulosic Hydrolysate

  • Inês C. Roberto
  • Ismael M. de Mancilha
  • Sunao Sato
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

The fermentation kinetics for the conversion of rice straw hemicellulosic hydrolysate to xylitol by the yeast Candida guilliermondii was evaluated under batch conditions. The fermentation was accomplished in a 1 L working volume stirred-tank reactor with aeration of 1.3 vvm and agitation of 300 rpm (kLa = 15/h). The maximum specific rate of xylitol formation (0.12 g/g) was achieved when the specific growth rate was lowered to 1/5 of its highest value. From analysis of the fermentation kinetics, a linear correlation between specific growth rate (μx) and specific rate of xylitol formation (qp ) was evident. Based on the Gaden model, this bioprocess was classified as growth-associated production and the relationship between μx and qp can be described by the equation qp = 6.31 μx.

Index Entries

Rice straw xylitol fermentation kinetics Candida guilliermondii 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Preziosi-Belloy, L., Nolleau, V., and Navarro, J. M. (1997), Enzyme Microbial. Technol. 21, 124–129.CrossRefGoogle Scholar
  2. 2.
    Parajö, J.C., Dominguez, H., and Dominguez J.M. (1995), Bioprocess Eng. 13, 125–131.CrossRefGoogle Scholar
  3. 3.
    Dominguez, J. M., Gong, C. S., and Tsao, G. T. (1996), Appl. Biochem. BioTechnol. 57/58, 49–56.CrossRefGoogle Scholar
  4. 4.
    Parajö, J. C, Dominguez, H., and Dominguez, J. M. (1995), Bioprocess Eng. 16, 39–43.CrossRefGoogle Scholar
  5. 5.
    Roberto, I. C, Silva, S. S., Felipe, M. G. A., Sato, S., and Mancilha, I. M. (1996), Appl. Biochem. BioTechnol. 57/58, 339–347.CrossRefGoogle Scholar
  6. 6.
    Roberto, I. C, Sato, S., Mancilha, I. M., and Taqueda, M. E. S. (1995), Biotechnol. Lett. 17, 1223–1228.CrossRefGoogle Scholar
  7. 7.
    Roberto, I. C, Sato, S., and Mancilha, I. M. (1996), J. Ind. Microbiol. 16, 348–350.CrossRefGoogle Scholar
  8. 8.
    Barbosa, M. F. S., Medeiros, M. B., Mancilha, I. M., Schneider, H., and Lee, H., (1988), J. Ind. Microbiol. 3, 241–251.CrossRefGoogle Scholar
  9. 9.
    Le Duy, A. and Zajik, J. E. (1973), Biotechnol. Bioeng. 15, 805–810.CrossRefGoogle Scholar
  10. 10.
    Roberto, I. C, Felipe, M. G. A., Mancilha, I. M., Vitolo, M., Sato, S., and Silva, S. S. (1995), Biores. Technol. 51, 255–257.CrossRefGoogle Scholar
  11. 11.
    Lee, H., Sopher, C. R., and Yau, Y. F. (1996), J. Chem. Technol. BioTechnol. 66, 375–379.CrossRefGoogle Scholar
  12. 12.
    Sugai, J. K. and Delgenes, J. P. (1995), J. Ind. Microbiol. 14, 46–51.CrossRefGoogle Scholar
  13. 13.
    Nolleau, V., Preziosi-Belloy, L., Navarro, J. M., and Delgenes, J. P. (1995), Proceedings of the 8th European Biomass Conference. Chartier, P., Begnackers, C. M., and Grassi, G., eds., Pergamon, London, pp. 1411–1419.Google Scholar
  14. 14.
    Gaden, E. L., Jr. (1959), J. Biochem. Microbiol. Technol. Eng. 1, 413–429.CrossRefGoogle Scholar
  15. 15.
    Furlan, S. A., Bouilloud, P., and de Castro, H. F. (1994), Process Biochem. 29, 657–662.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Inês C. Roberto
    • 1
  • Ismael M. de Mancilha
    • 1
    • 3
  • Sunao Sato
    • 2
  1. 1.Department of BiotechnologyFaculty of Chemical Engineering of LorenaLorenaBrazil
  2. 2.Faculty of Pharmaceutical SciencesUniversity of São PauloBrazil
  3. 3.Food Science DepartmentFederal University of ViçosaBrazil

Personalised recommendations