Skip to main content

Antiglutamate Therapies for Neurodegenerative Disease

The Case of Amyotrophic Lateral Sclerosis

  • Chapter

Abstract

Neurodegenerative diseases are a heterogenous group of disorders that are typically adult onset, progressively debilitating, and/or fatal. They are often restricted to the central nervous system (CNS), e.g., Parkinson’s disease, but in some cases can affect multiple organ systems, e.g., ataxia telangectasia. They are typified by selective neural cell degeneration that may affect cells that often share biological or biochemical functions. For example, upper and lower motor neuron degeneration in amyotrophic lateral sclerosis (ALS), dopaminergic neurons in Parkinson’s disease, cerebellar Purkinje cells and olivary neurons in certain olivopontocerebellar atrophy disorders. In this chapter, the authors will review how the excitatory neurotransmitter glutamate may participate in the cellular degenerative process and discuss therapeutic interventions designed to slow the process. Importantly, glutamate-mediated neurotoxicity may act as either the primary or a secondary toxic agent in these diseases. As will be discussed below, the involvement of glutamate as a secondary event in neurodegeneration may provide a window of therapeutic opportunity to slow neuronal death in these disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hollmann M, Heinemann S. Cloned glutamate receptors. Ann Rev Neurosci 1994, 17: 31–108.

    Article  PubMed  CAS  Google Scholar 

  2. Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H. Differences in Ca2+ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 1994, 12

    Google Scholar 

  3. Sommer B, Keinanen K, Verdoorn T, et al. Flip and flop: a cell specific functional switch in glutamate operated channels in the CNS. Science 1990; 249: 1580–1585.

    Google Scholar 

  4. Herb A, Higuchi M, Sprengel R, Seeburg PH. Q/R site editing in kainate receptor GluR5 and GluRG pre-mRNAs requires distant intronic sequences. Proc Natl Acad Sci USA 1996, 93: 1875–1880.

    Article  PubMed  CAS  Google Scholar 

  5. Tolle TR, Berthele A, Zieglglinsberger W, Seeburg PH, Wisden W. The differential expression of 16 NMDA and non-NMDA receptor subunits in the rat spinal cord and in periaqueductal gray. J Neurosci 1993, 13: 5009–5028.

    PubMed  CAS  Google Scholar 

  6. Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 1994, 14: 5559–5569.

    PubMed  CAS  Google Scholar 

  7. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 1995, 375: 599–603.

    Article  PubMed  CAS  Google Scholar 

  8. Rothstein JD, Martin L, Levey AI, et al. Localization of neuronal and glial glutamate transporters. Neuron 1994, 13: 713–725.

    Article  PubMed  CAS  Google Scholar 

  9. Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 1995, 38: 73–84.

    Article  PubMed  CAS  Google Scholar 

  10. Arriza JL, Eliasof S, Kavanaugh MP, Amara SG. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 1997, 94: 4155–4160.

    Article  PubMed  CAS  Google Scholar 

  11. Arriza JL, Kavanaugh MP, Fairman WA, et al. Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J BiolChem 1993; 268: 15,329-15,332.

    Google Scholar 

  12. Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996, 16: 675–686.

    Article  PubMed  CAS  Google Scholar 

  13. Rothstein JD, Tabakoff B. Alteration of striatal glutamate release after glutamine synthetase inhibition. J Neurochem 1984; 43: 1438–1446.

    Google Scholar 

  14. Shank RP, Campbell GL. Amino acid uptake, content, and metabolism by neuronal and glial enriched cellular fractions from mouse cerebellum. J Neurosci 1984, 4: 8–69.

    Google Scholar 

  15. Shank RP, Campbell GL. Glutamine and alpha-ketoglutarate uptake and metabolismby nerve terminal enriched material from mouse cerebellum. Neurochem Res 1982, 7: 601–616.

    Article  PubMed  CAS  Google Scholar 

  16. Shank RP, Aprison MH. Present status and significance of the glutamine cycle in neural tissues. [Review] Life Sci 1981, 28: 837–842.

    Article  PubMed  CAS  Google Scholar 

  17. Schousboe A, Westergaard N, Hertz L. Neuronal-astrocytic interactlions in glutamate metabolism. Biochem Soc Trans 1993, 21: 49–53.

    PubMed  CAS  Google Scholar 

  18. Hertz L, Drejer J, Schousboe A. Energy metabolism in glutamatergic neurons, GABAergic neurons and astrocytes in primary cultures. Neurochem Res 1988, 13: 605–610.

    Article  PubMed  CAS  Google Scholar 

  19. Shaw PJ. Excitotoxicity and motor neuron disease: a review of the evidence. J Neurol Sci 1994, 124, 6–13.

    Google Scholar 

  20. al-Chalabi A, Powell JF, Leigh PN. Neurofilaments, free radicals, excitotoxins, and amyotrophic lateral sclerosis. Muscle Nerve 1995, 18: 540–545.

    Article  PubMed  CAS  Google Scholar 

  21. Rothstein JD. Therapeutic horizons for amyotrophic lateral sclerosis. Curr Opin Neurobiol 1996, 6: 679–687.

    Article  PubMed  CAS  Google Scholar 

  22. Rothstein JD. Excitotoxicity hypothesis. Neurology 1996, 47: S19–S26.

    Article  PubMed  CAS  Google Scholar 

  23. Rothstein JD, Kuncl R, Chaudhry V, et al. Excitatory amino acids in amyotrophic lateral sclerosis: an update. Ann Neurol 1991 230: 224–225.

    Google Scholar 

  24. Rothstein JD, Tsai G, Kuncl RW, et al. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 1990, 28: 18–25.

    Article  PubMed  CAS  Google Scholar 

  25. Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ. CSF and plasma amino acid levels in motor neuron disease—elevation of CSF glutamate in a subset of patients. Neurodegeneration 1995, 4: 209–216.

    Article  PubMed  CAS  Google Scholar 

  26. Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 1992, 326: 1464–1468.

    Article  PubMed  CAS  Google Scholar 

  27. Shaw PJ, Chinnery RM, Ince PG. [3H]D-aspartate binding sites in the normal human spinal cord and changes in motor neuron disease: a quantitative autoradiographic study. Brain Res 1994, 655: 195–201.

    Article  PubMed  CAS  Google Scholar 

  28. Nagy D, Kato T, Kushner PD. Reactive astrocytes are widespread in the cortical gray matter of amyotrophic lateral sclerosis. J Neurosci Res 1994, 38: 336–347.

    Article  PubMed  CAS  Google Scholar 

  29. Ginsberg SD, Martin LJ, Rothstein JD. Regional deafferentation down-regulates subtypes of glutamate transporter proteins. J Neurochem 1995, 65: 2800–2803.

    Article  PubMed  CAS  Google Scholar 

  30. Ginsberg SD, Rothstein JD, Price DL, Martin LJ. Fimbria-fornix transections selectively down-regulate subtypes of glutamate transporter and glutamate receptorproteins in septum and hippocampus. J Neurochem 1996, 67: 1208–1216.

    Article  PubMed  CAS  Google Scholar 

  31. Swanson RA, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC. Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 1997; 7: 932–940.

    Google Scholar 

  32. Bristol LA, Rothstein JD. Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Ann Neurol 1996 339: 676–679.

    Google Scholar 

  33. Lin G, Bristol LA, Rothstein JD. An abnormal mRNA leads to downregulation of glutamate transporter EAAT2 (GLT-1) expression in amyotrophic lateral sclerosis. Ann Neurol 1996, 740: 540–541.

    Google Scholar 

  34. Beckman JS, Carson M, Smith CD, Koppenol WH. ALS, SOD and peroxynitrite. Nature 1993, 364: 584.

    Article  PubMed  CAS  Google Scholar 

  35. Ischiropoulos H, Zhu L, Chen J, et al. Peroxynitrite-mediated tyrosine nitration catalyzed by Superoxide dismutase. Arch Biochem Biophys 1992, 298: 431–437.

    Article  PubMed  CAS  Google Scholar 

  36. Trotti D, Rossi D, Gjesdal O, et al. Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem 1996, 271: 976–5979.

    Google Scholar 

  37. Volterra A. Inhibition of high-affinity glutamate transport in neuronal and glial cells by arachidonic acid and oxygen-free radicals. Molecular mechanisms and neuropathological relevance. Renal Physiol Biochem 1994; 17: 165–167.

    Google Scholar 

  38. Volterra A, Trotti D, Tromba C, Floridi S, Racagni G. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 1994, 74: 924–2932.

    Google Scholar 

  39. Trotti D, Volterra A, Lehre KP, et al. Arachidonic acid inhibits a purified and reconstituted glutamate transporter directly from the water phase and not via the phospholipid membrane. J Biol Chem 1995, 270: 9890–9895.

    Article  PubMed  CAS  Google Scholar 

  40. Nagano I, Wong PC, Rothstein JD. Nitration of glutamate transporters in transgenic mice with a familial amyotrophic lateral sclerosis-linked SODI mutation. Ann Neurol 1996, 40: 542.

    Google Scholar 

  41. Price DL, Martin LJ, Clatterbuck RE, et al. Neuronal degeneration in human diseases and animal models. J Neurobiol 1992, 23: 1277–1294.

    Article  PubMed  CAS  Google Scholar 

  42. Lee MK, Borchelt DR, Wong PC, Sisodia SS, Price DL. Transgenic models of neuro-degenerative diseases. Curr Opin Neurobiol 1996; 6: 651–660.

    Google Scholar 

  43. Bruijn LI, Cleveland DW. Mechanisms of selective motor neuron death in ALS: Insights from transgenic mouse models of motor neuron disease. Neuropathol Appl Neurobiol 1996; 22: 373–387.

    Google Scholar 

  44. Ince P, Stout N, Shaw P, et al. Parvalbumin and calbiT din D-28k in the human motor system and in motor neuron disease. Neuropathol Appl Neurobiol 1993; 19: 291–299.

    Google Scholar 

  45. Shaw PJ, Chinnery RM, Ince PG. Non-NMDA receptors in motor neuron disease (MND): a quantitative autoradiographic study in spinal cord and motor cortex using [3H]CNQX and [3H]kainate. Brain Res 1994; 655: 186–194.

    Google Scholar 

  46. Carriedo SG, Yin H-Z, Lamberta R, Weiss JH. In vitro kainate injury to large, SMI32(+) spinal neurons is CA2+ dependent. Neuroreport 1995, 45, 548.

    Google Scholar 

  47. Williams TL, Day NC, Ince PG, Kamboj RK, Shaw PJ. Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptors: a molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Ann Neurol 1997 42: 200–207.

    Google Scholar 

  48. Hugon J, Vallet JM. Abnormal distribution of phosphorylated neurofilaments in neuronal dgeration induced by kainic acid. Neurosci Lett 1990 19: 548.

    Google Scholar 

  49. Ikonomidou C, Qin Qin Y, Labruyere J, Olney JW. Motor neuron degeneration induced by excitotoxin agonists has features in common with those seen in the SOD1 transgenic mouse model of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 1996, 55: 211–224.

    Article  PubMed  CAS  Google Scholar 

  50. Rothstein JD, Kuncl RW. Neuroprotective strategies in a model of chronic glutamate-mediated motor neuron toxicity. J Neurochem 1995, 65: 643–651.

    Article  PubMed  CAS  Google Scholar 

  51. Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci USA 1993 90: 6591–6595.

    Google Scholar 

  52. Rothstein JD, Bristol LA, Hosier B, Brown RH, Jr., Kuncl RW. Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons. Proc Natl Acad Sci USA 1994 91: 4155–4159.

    Google Scholar 

  53. Pruss RM, Akeson RL, Racke MM, Wilburn JL. Agonist-activated cobalt uptake identifies divalent cation-permeable kainate receptors on neurons and glial cells. Neuron 1991, 7: 509–518.

    Article  PubMed  CAS  Google Scholar 

  54. Shaw PJ, Ince PG, Matthews JN, Johnson M, Candy JM. N-methyl-d-aspartate (NMDA) receptors in the spinal cord and motor cortex in motor neuron disease: a quantitative auto-radiographic study using [3H]MK-801. Brain Res 1994, 637: 297–302.

    Article  PubMed  CAS  Google Scholar 

  55. Chinnery RM, Shaw PJ, Ince PG, Johnson M. Autoradiographic distribution of binding sites for the non-NMDA receptor antagonist [3H]CNQX in human motor cortex, brainstem and spinal cord. Brain Res 1993, 630: 75–81.

    Article  PubMed  CAS  Google Scholar 

  56. Shaw PJ, Ince PG, Johnson M, Perry EK, Candy JM. The quantitative autoradiographic distribution of [3H]MK-801 binding sites in the normal human brainstem in relation to motor neuron disease. Brain Res 1992, 572: 276–280.

    Article  PubMed  CAS  Google Scholar 

  57. Tolle TR, Berthele A, Zieglgansberger W, Seeburg PH, Wisden W. Flip and Flop variants of AMP A receptors in the rat lumbar spinal cord. Eur J Neurosci 1995, 7: 1414–1419.

    Article  PubMed  CAS  Google Scholar 

  58. Tolle TR, Berthele A, Laurie DJ, Seeburg PH, Zieglgansberger W. Cellular and subcellular distribution of NMDAR1 splice variant mRNA in the rat lumbar spinal cord. Eur J Neurosci 1995, 7: 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  59. Shaw PJ, Ince PG. A quantitative autoradiographic study of [3H]kainate binding sites in the normal human spinal cord, brainstem and motor cortex. Brain Res 1994, 641: 39–45.

    Article  PubMed  CAS  Google Scholar 

  60. Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Antisense knockout of glutamate transporters reveals a predominant role for astroglial glutamate transport in excitotoxicity and clearance of extracellular glutamate. Neuron 1996; 16: 675–686.

    Google Scholar 

  61. Tanaka K, Watase K, Manabe T, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 1997, 276: 1699–1702.

    Article  PubMed  CAS  Google Scholar 

  62. Louvel E, Hugon J, Doble A. Therapeutic advances in amyotrophic lateral sclerosis. Trends Pharm Sci 1997, 18: 196–203.

    PubMed  CAS  Google Scholar 

  63. Bryson HM, Fulton B, Benfield P. Riluzole—A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis. Drugs 1996, 52: 549–563.

    Article  PubMed  CAS  Google Scholar 

  64. Bensimon G, Lacomblez L, Meininger V, Group TARS. A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 1994; 330: 585–591.

    Google Scholar 

  65. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet 1996, 347: 1425—1431.

    Google Scholar 

  66. Eisen A, Stewart H, Schulzer M, Cameron D. Anti-glutamate therapy in amyotrophic lateral sclerosis: a trial using lamotrigine. Can J Neurol Sci 1993, 20: 297–301.

    PubMed  CAS  Google Scholar 

  67. Hollander D, Pradas J, Kaplan R, McLeod HL, Evans WE, Munsat TL. High-dose dextromethorphan in amyotrophic lateral sclerosis: phase I safety and pharmacokinetic studies. Ann Neurol 1994; 36: 920–924.

    Google Scholar 

  68. Casado M, Zafra F, Aragon C, Gimenez C. Activation of high-affinity uptake of glutamate by phorbol esters in primary glial cell cultures. J Neurochem 1991, 57: 1185–1190.

    Article  PubMed  CAS  Google Scholar 

  69. Casado M, Bendahan A, Zafra F, et al. Phosphorylation and modulation of brain glutamate transporters by protein kinase C. J Biol Chem 1993, 268: 27,313-27,317.

    Google Scholar 

  70. Erecinska M, Nelson D. Activation of glutamate debydrogenase by leucine and its nonmetabolizable analogue in rat brain synaptosomes. J Neurochem 1990, 54: 1335–1343.

    Article  PubMed  CAS  Google Scholar 

  71. Yudkoff M, Nissim I, Nelson D, Lin ZP, Erecinska M. Glutamate dehydrogenase reaction as a source of glutamic acid in synaptosomes. J Neurochem 1991, 57: 153–160.

    Article  PubMed  CAS  Google Scholar 

  72. Erecinska M, Silver IA. Metabolism and role of glutamate in mammalian brain. Prog Neurobiol 1990, 35: 245–296.

    Article  PubMed  CAS  Google Scholar 

  73. Plaitakis A, Smith J, Mandeli J, Yahr MD. Pilot trial of branched-chain aminoacids in amyotrophic lateral sclerosis. Lancet 1988, 1: 1015–1018.

    Article  PubMed  CAS  Google Scholar 

  74. Testa D, Caraceni T, Fetoni V. Branched-chain amino acids in the treatment of amyotrophic lateral sclerosis. J Neurol 1989, 236: 445–447.

    Article  PubMed  CAS  Google Scholar 

  75. Tandan R, Bromberg MB, Forshew D, et al. A controlled trial of amino acid therapy in amyotrophic lateral sclerosis: I. Clinical, functional, and maximum isometric torque data. Neurology 1996, 47: 1220-1226.

    Google Scholar 

  76. Kostic V, Jackson-Lewis V, Bilbao F, Dubois-Dauphin M, Przedborski S. Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 1997, 277: 559–562.

    Article  PubMed  CAS  Google Scholar 

  77. Gurney ME, Cuttings FB, Zhai P, et al. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol 1996, 39: 147–157.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bar-Peled, O., Rothstein, J.D. (1999). Antiglutamate Therapies for Neurodegenerative Disease. In: Koliatsos, V.E., Ratan, R.R. (eds) Cell Death and Diseases of the Nervous System. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1602-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1602-5_31

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7213-7

  • Online ISBN: 978-1-4612-1602-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics