Skip to main content

Parkinson’s Disease

  • Chapter

Abstract

Parkinson’s disease (PD) is a progressive, degenerative neurologic disease which usually occurs in late mid-life and presents clinically with motor impairment. There are four principal motor signs on which the diagnosis is based: tremor at rest, rigidity, bradykinesia (or slowing of movement) and postural instability. In recent years, it has become apparent that a decline in cognitive function and depression occur as well. PD is a major public health problem. Its prevalence has been estimated to be 200–300 affected individuals per 100,000 population, an estimate which would suggest that approximately 500,000 individuals in the United States are affected. The prevalence of the disorder increases with age, with estimates of up to 800 affected per 100,000 in the 65 yr and older group. Therefore, it is anticipated that the magnitude of PD as a public health problem will increase many fold as we enter the next century, when the proportion of Americans older than 65 is expected to double.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langston JW, Ballard PA, Tetrud JW, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983, 219: 979–980.

    Article  PubMed  CAS  Google Scholar 

  2. Mayeux R, Denaro J, Hemenegildo N, Marder K, Tang M-X, Cote LJ, Stern Y. A population-based investigation of Parkinson’s disease with and without dementia. Arch Neurol 1992, 49: 492–497.

    Article  PubMed  CAS  Google Scholar 

  3. Carlsson A, Winblad B. Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. J Neural Trans 1976, 38: 271–276.

    Article  CAS  Google Scholar 

  4. Mcgeer PL, Mcgeer EG, Suzuki JS. Aging and extrapyramidal function. Arch Neurol 1977, 34: 33–35.

    Article  PubMed  CAS  Google Scholar 

  5. Kish SJ, Shannak K, Rajput A, Deck Jhn, Hornykiewicz O. Aging produces a specific pattern of striatal dopamine loss implications for the etiology of idiopathic Parkinsons Disease. J Neurochem 1992, 58: 642–648.

    Article  PubMed  CAS  Google Scholar 

  6. Scherman D, Desnos C, Darchen F, Pollak P, Javoy-Agid F, Agid Y. Striatal dopamine deficiency in Parkinson’s disease: Role of aging. Ann Neurol 1989, 26: 551–557.

    Article  PubMed  CAS  Google Scholar 

  7. Fearnley M, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991, 114: 228–301.

    Article  Google Scholar 

  8. McGeer PL, Itagaki S, Akiyama H, McGeer EG. Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol 1988, 24: 547–576.

    Article  Google Scholar 

  9. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988, 38: 1285–1291.

    Article  PubMed  CAS  Google Scholar 

  10. Tanner CM. Epidemiology of Parkinson’s disease. Neurologic Clinics 1992, 10: 317–329.

    PubMed  CAS  Google Scholar 

  11. Langsten JW, Koller WC, Giron LT. Etiology of Parkinson’s disease, in The Scientific Basis for the Treatment of Parkinson’s Disease, (Olanow CW, Lieberman AN, eds), 1st edition, The Parthenon Publishing Group, Inc., Park Ridge, NJ, 1992, pp. 33–58.

    Google Scholar 

  12. Duvoisin RC. The genetics of Parkinson’s disease: A review, in Advances in Neurology, Volume 60: Parkinson’s Disease from Basic Research to Treatment, (Narabayashi H, Nagatsu T, Yanagisawa N, Mizuno Y.) Raven Press, NY, 1993, pp. 306–315.

    Google Scholar 

  13. Duvoisin RC. Recent advances in the genetics of Parkinson’s disease, in Advances in Neurology, Volume 69: Parkinson’s Disease, (Battistin L, Scarlato G, Caraceni T, Ruggieri S., eds), Lippincott-Raven Publishers, Philadelphia, PA, 1996, pp. 33–40.

    Google Scholar 

  14. Johnson Wg, Hodge Se, Duvoisin R. Twin studies and the genetics of Parkinson’s disease— a reappraisal. Mov Disord 1990, 5: 187–194.

    Article  PubMed  CAS  Google Scholar 

  15. Burn DJ, Mark MH, Playford ED, Maraganore DM, Zimmerman TR, Duvoisin RC, Harding AE, Marsden CD, Brooks DJ. Parkinson’s Disease in twins studied with F 18 DOPA and positron emission tomography. Neurology 1992, 42: 1894–1900.

    Article  PubMed  CAS  Google Scholar 

  16. Golbe LI, Di Iorio G, Bonavita V, Miller DC, Duvoisin RC. Autosomal dominant Parkinson’s disease. Ann Neurol 1990, 27: 276–282.

    Article  PubMed  CAS  Google Scholar 

  17. Olanow CW. An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol 1992, 32: S2–S9.

    Article  PubMed  CAS  Google Scholar 

  18. Fahn S, Cohen G. The Oxidant Stress Hypothesis In Parkinson’s Disease. Evidence supporting it. Ann Neurol 1992, 32: 804–812.

    Article  PubMed  CAS  Google Scholar 

  19. Swartz HM, Sarna T, Zecca L. Modulation by neuromelanin of the availability and reactivity of metal ions. Ann Neurol 1992, 32: S69–S75.

    Article  PubMed  CAS  Google Scholar 

  20. Cohen G, Heikkila RE. The generation of hydrogen peroxide, Superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 1974, 249: 2447–2452.

    PubMed  CAS  Google Scholar 

  21. Heikkila RE, Cohen G. 6-Hydroxydopamine. evidence for superoxide radical as an oxidative intermediate. Science 1973, 181: 456–457.

    Article  PubMed  CAS  Google Scholar 

  22. Przedborski S, Kostic V, Jackson-Lewis V, Naini AB, Simonetti S, Fahn S, Carlson E, Epstein CJ, Cadet JL. Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J Neurosci 1992, 12: 1658–1667.

    PubMed  CAS  Google Scholar 

  23. Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 1989, 52: 381–389.

    Article  PubMed  CAS  Google Scholar 

  24. Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: An HPLC and ESR study. Mov Disord 1994, 9: 92–97.

    Article  PubMed  CAS  Google Scholar 

  25. Sanchez-Ramos JR, Overvik E, Ames BN. A marker of oxyradical-mediated DNA damage (8-hydroxy-2′deoxyguanosine) is increased in nigro striatum of Parkinson’s disease brain. Neurodegen 1994, 3: 197–204.

    Google Scholar 

  26. Smith MA, Sayre LM, Monnier VM, Perry G. Radical ageing in Alzheimer’s disease. Trends Neurosci 1995, 18: 172–176.

    Article  PubMed  CAS  Google Scholar 

  27. Yoritaka A, Hattori N, Uchida K, Tanaka M, Stadtman ER. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson’s disease. Proc Natl Acad Sci USA 1996, 93: 2696–2701.

    Article  PubMed  CAS  Google Scholar 

  28. Perry TL, Godin DV, Hansen S. Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 1982, 33: 305–310.

    Article  PubMed  CAS  Google Scholar 

  29. Jenner P, Dexter DT, Sian J, Schapira Ahv, Marsden Cd. Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. Ann Neurol 1992, 32: S82–S87.

    Article  PubMed  CAS  Google Scholar 

  30. Gibb WRG, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol 1988, 51: 745–752.

    CAS  Google Scholar 

  31. Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 1989, 52: 1830–1836.

    Article  PubMed  CAS  Google Scholar 

  32. Dexter DT, Carayon A, Vidailhet M, Ruberg M, Agid F, Agid Y, Lees AJ, Wells FR, Jenner P, Marsden CD. Decreased ferritin levels in brain in Parkinson’s disease. J Neurochem 1990, 55: 16–20.

    Article  PubMed  CAS  Google Scholar 

  33. Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 1991, 114: 1953–1975.

    Article  PubMed  Google Scholar 

  34. Faucheux BA, Nillesse N, Damier P, Spik G, Mouattprigent A, Pierce A, Leveugle B, Kubis N, Hauw JJ, Agid Y, Hirsch EC. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson’s disease. Proc Natl Acad Sci USA 1995, 92, 9603–9607.

    Google Scholar 

  35. Schapira AHV, Mann VM, Cooper JM, Krige D, Jenner PJ, Marsden CD. Mitochondrial function in Parkinson’s disease. Ann Neurol 1992, 32, S116–S124.

    Google Scholar 

  36. Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by MPP+, a metabolite of the neurotoxin MPTP. Life Sci 1985, 36: 2503–2508.

    Article  PubMed  CAS  Google Scholar 

  37. Calne Db. The free radical hypothesis in idiopathic parkinsonism: Evidence against it. Ann Neurol 1992, 32: 799–803.

    Article  PubMed  CAS  Google Scholar 

  38. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993, 262: 689–695.

    Article  PubMed  CAS  Google Scholar 

  39. Albin RL, Greenamyre JT. Alternative excitotoxic hypotheses. Neurology 1992, 42: 733–738.

    Article  PubMed  CAS  Google Scholar 

  40. Turski L, Bressler K, Rettig K-J, Loschmann PA, Wachtel H. Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature 1991, 349: 414–418.

    Article  PubMed  CAS  Google Scholar 

  41. Sonsalla PK, Zeevalk GD, Manzino L, Giovanni A, Nicklas WJ. MK-801 fails to protect against the dopaminergic neuropathology produced by systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice or intranigral l-methyl-4-phenylpyridinium in rats. J Neurochem 1992, 58: 1979–1982.

    Article  PubMed  CAS  Google Scholar 

  42. Difazio MC, Hollingsworth Z, Young AB, Penney JB, Jr. Glutamate receptors in the substantia nigra of Parkinson’s disease brains. Neurology 1992, 42: 402–406.

    Article  PubMed  CAS  Google Scholar 

  43. Casper D, Blum M. Epidermal growth factor and basic fibroblast growth factor protect dopaminergic neurons from glutamate toxicity in culture. J Neurochem 1995, 65: 1016–1026.

    Article  PubMed  CAS  Google Scholar 

  44. Patii N, Cox Dr, Bhat D, Faham M, Myers RM, Peterson AS. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nature Genetics 1995, 11: 126–129.

    Article  Google Scholar 

  45. Slesinger PA, Patii N, Liao J, Jan YN, Jan LY, Cox DR. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron 1996, 16: 321–331.

    Article  PubMed  CAS  Google Scholar 

  46. Barde YA. Trophic factors and neuronal survival. Neuron 1989, 2: 1525–1534.

    Article  PubMed  CAS  Google Scholar 

  47. Burke RE, Macaya A, Devivo D, Kenyon N, Janec EM. Neonatal hypoxic-ischemic or excitotoxic striatal injury results in a decreased adult number of substantia nigra neurons. Neuroscience 1992, 50: 559–569.

    Article  PubMed  CAS  Google Scholar 

  48. Macaya A, Burke RE. Effect of striatal lesion with quinolinate on the development of substantia nigra dopaminergic neurons: a quantitative morphological analysis. Dev Neurosci 1992, 14: 362–368.

    Article  PubMed  CAS  Google Scholar 

  49. Schwarcz R, Whetsell WO, Mangano RM. Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in the rat brain. Science 1983, 219: 316–318.

    Article  PubMed  CAS  Google Scholar 

  50. Prochiantz A, Di Porzio U, Kato A, Berger B, Glowinski J. In vitro maturation of mesencephalic dopaminergic neurons from mouse embryos is enhanced in presence of their striatal target cells. Proc Natl Acad Sci USA 1979, 76: 5387–5391.

    Article  PubMed  CAS  Google Scholar 

  51. Hemmendinger LM, Garber BB, Hoffmann PC, Heller A. Target neuron-specific process formation by embryonic mesencephalic dopamine neurons in vitro. Proc Natl Acad Sci USA 1981, 78: 1264–1268.

    Article  PubMed  CAS  Google Scholar 

  52. Hoffmann PC, Hemmendinger LM, Kotake C, Heller A. Enhanced dopamine cell survival in reaggregates containing target cells. Brain Res 1983, 274: 275–281.

    Article  PubMed  CAS  Google Scholar 

  53. Tomozawa Y, Appel SH. Soluble striatal extracts enhance development of mesencephalic dopaminergic neurons in vitro. Brain Res 1986, 399: 111–124.

    Article  PubMed  CAS  Google Scholar 

  54. Clarke PGH. Neuronal death in the development of the veterbrate nervous system. Trends Neurosci 1985, 345–349.

    Google Scholar 

  55. Janec E, Burke RE. Naturally occurring cell death during postnatal development of the substantia nigra of the rat. Mol Cell Neurosci 1993, 4: 30–35.

    Article  PubMed  CAS  Google Scholar 

  56. Oo TF, Burke RE. Time course of developmental cell death in phenotypically-defined dopaminergic neurons of the substantia nigra. Soc Neurosci Abstr 1996, 22: in press

    Google Scholar 

  57. Tepper JM, Damlama M, Trent F. Postnatal changes in the distribution and morphology of rat substantia nigra dopaminergic neurons. Neuroscience 1994, 60: 469–477.

    Article  PubMed  CAS  Google Scholar 

  58. Macaya A, Munell F, Gubits RM, Burke RE. Apoptosis in substantia nigra following developmental striatal excitotoxic injury. Proc Natl Acad Sci USA 1994, 91: 8117–8121.

    Article  PubMed  CAS  Google Scholar 

  59. Stefanis L, Burke RE. Transneuronal degeneration in substantia nigra pars reticulata following striatal excitotoxic injury in adult rat: Time course, distribution, and morphology of cell death. Neuroscience 1996, in press

    Google Scholar 

  60. Lundberg C, Wictorin K, Bjorklund A. Retrograde degenerative changes in the substantia nigra pars compacta following an excitotoxic lesion of the striatum. Brain Res 1994, 644: 205–212.

    Article  PubMed  CAS  Google Scholar 

  61. Krammer EB. Anterograde and transsynaptic degeneration “en cascade” in basal ganglia induced by intrastriatal injection of kainic acid: an animal analogue of Huntington’s disease. Brain Res 1980, 196: 209–221.

    Article  PubMed  CAS  Google Scholar 

  62. Lindsay RM. Brain-derived neurotrophic factor: an NGF-related neurotrophin, in Neurotrophic Factors, (Loughlin SE, Fallon JH, eds.), Academic Press, San Diego, CA, 1993: pp.257–284.

    Google Scholar 

  63. Szeto A, Oo T, Burke RE. Naturally occurring cell death during postnatal development of the substantia nigra pars reticulata of rat. Mov Disord 1994, 9, Suppl 1: 106 (Abstract).

    Google Scholar 

  64. Saji M, Reis DJ. Delayed transneuronal death of substantia nigra neurons prevented by gamma-aminobutyric acid agonist. Science 1987, 235: 66–68.

    Article  PubMed  CAS  Google Scholar 

  65. Pasinetti GM, Morgan DG, Finch CE. Disappearance of GAD-mRNA and tyrosine hydroxylase in substantia nigra following striatal ibotenic acid lesions: evidence for transneuronal regression. Exp Neurol 1991, 112: 131–139.

    Article  PubMed  CAS  Google Scholar 

  66. Linden R. The survival of developing neurons: A review of afferent control. Neuroscience 1994, 58: 671–682.

    Article  PubMed  CAS  Google Scholar 

  67. Marti MJ, James CJ, Oo TF, Kelly WJ, Burke RE. Destruction of striatal dopaminergic terminals by injection of 6-hydroxydopamine induces apoptotic cell death in dopaminergic neurons of the substantia nigra during development. Mov Disord 1996, 11 (Suppl 1): 44.

    Google Scholar 

  68. Pilar G, Landmesser L. Ultrastructural differences during embryonic cell death in normal and peripherally deprived ciliary ganglia. J Cell Biol 1976, 68: 339–356.

    Article  PubMed  CAS  Google Scholar 

  69. Cunningham TJ. Naturally occurring neuron death and its regulation by developing neural pathways. Int Rev Cytol 1982, 74: 163–186.

    Article  PubMed  CAS  Google Scholar 

  70. Walkinshaw G, Waters CM. Neurotoxin induced cell death in neuronal PC12 cells is mediated by induction of apoptosis. Neuroscience 1994, 63: 975–987.

    Article  PubMed  CAS  Google Scholar 

  71. Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6 hydroxydopamine a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 1994, 59: 401–415.

    Article  PubMed  CAS  Google Scholar 

  72. Jeon BS, Jackson-Lewis V, Burke RE. 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegen 1995, 4: 131–137.

    Article  CAS  Google Scholar 

  73. Ichitani Y, Okamura H, Matsumoto Y, Nagatsu I, Ibata Y. Degeneration of the nigral dopamine neurons after 6-hydroxydopamine injection into the rat striatum. Brain Res 1991, 549: 350–353.

    Article  PubMed  CAS  Google Scholar 

  74. Dipasquale B, Marini AM, Youle RJ. Apoptosis and DNA degradation induced by 1-methyl-4-phenylpyridinium in neurons. Biochem Biophys Res Comm 1991, 181: 1442–1448.

    Article  PubMed  CAS  Google Scholar 

  75. Mochizuki H, Nakamura N, Nishi K, Mizuno Y. Apoptosis is induced by 1 Methyl 4 Phenylpyridinium ion (MPP(+)) in ventral mesencephalic striatal coculture in rat. Neurosci Lett 1994, 170: 191–194.

    Article  PubMed  CAS  Google Scholar 

  76. Mutoh T, Tokuda A, Marini AM, Fujiki N. 1 Methyl 4 Phenylpyridinum kills differentiated PC 12 cells with a concomitant change in protein phosphorylation. Brain Res 1994, 661: 51–55.

    Article  PubMed  CAS  Google Scholar 

  77. Hartley A, Stone JM, Heron C, Cooper JM, Schapira AHV. Complex I inhibitors induce dose dependent apoptosis in PC12 cells relevance to Parkinsons Disease. J Neurochem 1994, 63: 1987–1990.

    Article  PubMed  CAS  Google Scholar 

  78. Itano Y, Nomura Y. l-Methyl-4-phenyl-pyridinium ion (MPP(+)) causes DNA fragmentation and increases the Bcl-2 expression in human neuroblastoma, SH-SY5Y cells, through different mechanisms. Brain Res 1995, 704: 240–245.

    Article  PubMed  CAS  Google Scholar 

  79. Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine. Neurodegen 1995, 4: 257–269.

    Article  CAS  Google Scholar 

  80. Clarke PGH. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 1990, 181: 195–213.

    Article  PubMed  CAS  Google Scholar 

  81. Schwartz LM, Smith SW, Jones MEE, Osborne Ba. Do all programmed cell deaths occur via apoptosis?. Proc Natl Acad Sci USA 1993, 90: 980–984.

    Article  PubMed  CAS  Google Scholar 

  82. Hassouna I, Wickert H, Zimmermann M, Gillardon F. Increase in bax expression in substantia-nigra following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment of mice. Neurosci Lett 1996, 204: 85–88.

    Article  PubMed  CAS  Google Scholar 

  83. Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death. Cell 1993, 74: 609–619.

    Article  PubMed  CAS  Google Scholar 

  84. Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Sem Cancer Biol 1993, 4: 327–332.

    CAS  Google Scholar 

  85. Smeyne RJ, Goldowitz D. Development and death of external granular layer cells in the weaver mouse cerebellum: a quantitative study. J Neurosci 1989, 9: 1608—1620.

    Google Scholar 

  86. Migheli A, Attanasio A, Lee W-H, Bayer SA, Ghetti B. Detection of apoptosis in weaver cerebellum by electron microscopic in situ end-labeling of fragmented DNA. Neurosci Lett 1995, 199: 53–56.

    Article  PubMed  CAS  Google Scholar 

  87. Wullner U, Loschmann PA, Weiler M, Klockgether T. Apoptotic cell death in the cerebellum of mutant weaver and lurcher mice. Neurosci Lett 1995, 200: 109–112.

    Article  PubMed  CAS  Google Scholar 

  88. Harrison Smw, Roffler-Tarlov S. Apoptotic and non-apoptotic cell death in the mouse mutant weaver. Soc Neurosci Abstr 1995, 424: 16

    Google Scholar 

  89. Oo TF, Blazeski R, Harrison SMW, Henchcliffe C, Mason CA, Roffler-Tarlov S, Burke RE. Neuron death in the substantia nigra of weaver mouse occurs late in development and is not apoptotic. J Neurosci 1996, in press

    Google Scholar 

  90. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol 1980, 68: 251–306.

    Article  PubMed  CAS  Google Scholar 

  91. Kerr JFR, Gobe GC, Winterford CM, Harmon BV. Anatomical methods in cell death, in Methods in Cell Biology: Cell Death, (Schwartz LM, Osborne BA, eds.), Academic Press, NY, 1995: pp. 1–27.

    Google Scholar 

  92. Clarke PGH, Oppenheim RW. Neuron death in vertebrate development: in vivo methods, in Methods in Cell Biology: Cell Death, (Schwartz LM, Osborne BA, eds.), Academic Press, NY, 1995: pp. 277–321.

    Google Scholar 

  93. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992, 119: 493–501.

    Article  PubMed  CAS  Google Scholar 

  94. Grasl-Kraupp B, Ruttkay-Ndicky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R. In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: A cautionary note. Hepatology 1995, 21: 1465–1468.

    PubMed  CAS  Google Scholar 

  95. Oo TF, Henchcliffe C, Burke RE. Apoptosis in substantia nigra following developmental hypoxic-ischemic injury. Neuroscience 1995, 69: 893–901.

    Article  PubMed  CAS  Google Scholar 

  96. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez M, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y. Apoptotic degeneration of nigral dopaminergic neurons in Parkinson’s disease. Soc Neurosci Abstr 1995, 21: 1250

    Google Scholar 

  97. Lindvall O, Rehncrona S, Brundin P, Gustava B, Astedt B, Widner H, Lindholm T, Bjorklund A, Leenders KL, Rothwell JC, Frackowiak R, Marsden CD, Johnels B, Steg G, Freedman R, Hoffer BJ, Seiger A, Bygdeman M, Stromberg I, Olson L. Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease. Arch Neurol 1989, 46: 615–631.

    Article  PubMed  CAS  Google Scholar 

  98. Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Marsden CD, Bjorklund A. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990, 247: 574–577.

    Article  PubMed  CAS  Google Scholar 

  99. Lindvall O, Sawle G, Widner H, Rothwell JC, Bjorklund A, Brooks D, Brundin P, Frackowiak R, Marsden CD, Odin P, Rehncrona S. Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol 1994, 35: 172–180.

    Article  PubMed  CAS  Google Scholar 

  100. Yurek DM, Sladek JR. Dopamine cell replacement: Parkinson’s disease. Ann Rev Neurosci 1990, 13: 415–440.

    Article  PubMed  CAS  Google Scholar 

  101. Mahalik TJ, Hahn WE, Clayton GH, Owens GP. Programmed cell death in developing grafts of fetal substantia nigra. Exp Neurol 1994, 129: 27–36.

    Article  PubMed  CAS  Google Scholar 

  102. Fahn S. Controversies in the therapy of Parkinson’s disease, in Advances in Neurology, Volume 69: Parkinson’s Disease, (Battistin L, Scarlato G, Caraceni T, Ruggieri S., eds.), 1st edition, Lippincott-Raven Publishers, Philadelphia, PA, 1996: pp. 477–486.

    Google Scholar 

  103. Ziv I, Melamed E, Nardi N, Luria D, Achiron A, Offen D, Barzilai A. Dopamine induces apoptosis like cell death in cultured chick sympathetic neurons a possible novel pathogenetic mechanism in Parkinsons disease. Neurosci Lett 1994, 170: 136–140.

    Article  PubMed  CAS  Google Scholar 

  104. Walkinshaw G, Waters CM. Induction of apoptosis in catecholaminergic PC 12 cells by L-dopa. J Clin Invest 1995, 95: 2458–464.

    Article  PubMed  CAS  Google Scholar 

  105. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Golbe LI, Nussbaum RL. Mutation in the a-synuclein gene identified in families with parkinson’s disease. Science 1997, 276: 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  106. Tatton NA, Kish SJ. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxy-nucleotidyl transferase labeling and acridine orange. Neuroscience 1997, 77: 1037–1048.

    Article  PubMed  CAS  Google Scholar 

  107. Tompkins MM, Basgall EJ, Zamrini E, Hill WD. Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am J Path 1997, 150: 119–131.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burke, R.E. (1999). Parkinson’s Disease. In: Koliatsos, V.E., Ratan, R.R. (eds) Cell Death and Diseases of the Nervous System. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1602-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1602-5_22

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7213-7

  • Online ISBN: 978-1-4612-1602-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics