Numerical Methods for Pursuit-Evasion Games via Viscosity Solutions

  • Martino Bardi
  • Maurizio Falcone
  • Pierpaolo Soravia
Part of the Annals of the International Society of Dynamic Games book series (AISDG, volume 4)


We present a class of numerical schemes for the Isaacs equation of pursuit-evasion games. We consider continuous value functions, where the solution is interpreted in the viscosity sense, as well as discontinuous value functions, where the notion of viscosity envelope-solution is needed. The convergence of the approximation scheme to the value function of the game is proved in both cases. A priori estimates of the convergence in L are established when the value function is Hölder continuous. We also treat problems with state constraints and discuss several issues concerning the implementation of the approximation scheme, the synthesis of approximate feedback controls, and the approximation of optimal trajectories. The efficiency of the algorithm is illustrated by a number of numerical tests, either in the case of one player (i.e., minimum time problem) or for some 2-players games.


Viscosity Solution State Constraint Optimal Trajectory Differential Game Admissible Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AL94]
    B. Alziary and P.L. Lions. A grid refinement method for deterministic control and differential games. Math. Models Methods Appl. Sci., 4(6):899–910, 1994.MathSciNetMATHCrossRefGoogle Scholar
  2. [A191]
    B. Alziary de Roquefort. Jeux différentiels et approximation numérique de fonctions valeur. lre partie: étude théorique, 2e partie: étude numérique. RAIRO Modél. Math. Anal. Numér., 25:517–560, 1991.MathSciNetMATHGoogle Scholar
  3. [BB95]
    M. Bardi and S. Bottacin. Discontinuous solutions of degener-ate elliptic boundary value problems. Preprint 22, Università di Padova, 1995.Google Scholar
  4. [BBF95]
    M. Bardi, S. Bottacin, and M. Falcone. Convergence of dis-crete schemes for discontinuous value functions of pursuit-evasion games. In G.J. Olsder, Ed., New Trends in Dynamic Games and Application, pp. 273–304. Birkhäuser, Boston, 1995.CrossRefGoogle Scholar
  5. [BCD97]
    M. Bardi and I. Capuzzo Dolcetta. Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston, 1997.MATHCrossRefGoogle Scholar
  6. [BF90a]
    M. Bardi and M. Falcone. An approximation scheme for the minimum time function. SIAM J. Control Optim., 28:950–965, 1990.MathSciNetMATHCrossRefGoogle Scholar
  7. [BF90b]
    M. Bardi and M. Falcone. Discrete approximation of the min-imal time function for systems with regular optimal trajectories. In A. Bensoussan and J.L. Lions, Eds., Analysis and Optimization of Systems, volume 144 of Lecture Notes in Control and Inform. Sci., pp. 103–112. Springer, Berlin, 1990.Google Scholar
  8. [BFS94]
    M. Bardi, M. Falcone, and P. Soravia. Fully discrete schemes for the value function of pursuit-evasion games. In T. Basar and A. Haurie, Eds., Advances in Dynamic Games and Applications, pp. 89–105. Birkhäuser, Boston, 1994.CrossRefGoogle Scholar
  9. [BG97]
    M. Bardi and P. Goatin. A Dirichlet type problem for nonlin-ear degenerate elliptic equations arising in time-optimal stochastic control. Preprint, SISSA-ISAS, Trieste, 1997.Google Scholar
  10. [BKS96]
    M. Bardi, S. Koike, and P. Soravia. Pursuit-evasion games with state constraints: Dynamic programming and discrete-time approximation. Preprint 28, Università di Padova, 1998.Google Scholar
  11. [BS89]
    M. Bardi and P. Soravia. A PDE framework for differential games of pursuit-evasion type. In T. Bagar and P. Bernhard, Eds., Differential games and applications, volume 119 of Lecture Notes in Control and Inform. Sci., pp. 62–71. Springer, Berlin, 1989.CrossRefGoogle Scholar
  12. [BS91a]
    M. Bardi and P. Soravia. Hamilton-Jacobi equations with singular boundary conditions on a free boundary and applications to differential games. Trans. Amer. Math. Soc., 325:205–229, 1991.MathSciNetMATHCrossRefGoogle Scholar
  13. [BS91b]
    M. Bardi and P. Soravia. Approximation of differential games of pursuit-evasion by discrete time games. In R.P. Hamalainen and H.K. Ethamo, Eds., Differential Games — Developments in Modelling and Computation, volume 156 of Lecture Notes in Control and Inform. Sci., pages 131–143. Springer, Berlin, 1991.CrossRefGoogle Scholar
  14. [BS91c]
    M. Bardi and P. Soravia. Time-optimal control, Lie brackets, and Hamilton-Jacobi equations. Technical report, Università di Padova, 1991.Google Scholar
  15. [BS94]
    M. Bardi and P. Soravia. A comparison result for Hamilton-Jacobi equations and applications to some differential games lacking controllability. Funkcial. Ekvac., 37:19–43, 1994.MathSciNetMATHGoogle Scholar
  16. [BSt93]
    M. Bardi and V. Staicu. The Bellman equation for time-optimal control of non-controllable nonlinear systems. Acta Appl. Math., 31:201–223, 1993.MathSciNetMATHCrossRefGoogle Scholar
  17. [Ba93]
    G. Barles. Discontinuous viscosity solutions of first order Hamilton-Jacobi equations: a guided visit. Nonlinear Anal., 20:1123–1134, 1993.MathSciNetMATHCrossRefGoogle Scholar
  18. [Ba94]
    G. Barles. Solutions de viscosité des équations de Hamilton- Jacobi, volume 17 of Mathematiques et Applications. Springer, Paris, 1994.Google Scholar
  19. [BaP87]
    G. Barles and B. Perthame. Discontinuous solutions of de-terministic optimal stopping time problems RAIRO Modél. Math. Anal. Numér., 21:557–579, 1987.MathSciNetMATHGoogle Scholar
  20. [BaP88]
    G. Barles and B. Perthame. Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim., 26:1133–1148, 1988.MathSciNetMATHCrossRefGoogle Scholar
  21. [BaSo91]
    G. Barles and P.E. Souganidis. Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal., 4:271–283, 1991.MathSciNetMATHGoogle Scholar
  22. [BEJ84]
    E.N. Barron, L.C. Evans, and R. Jensen. Viscosity solutions of Isaac’s equation and differential games with Lipschitz con-trols. J. Differential Equations, 53:213–233, 1984.MathSciNetMATHCrossRefGoogle Scholar
  23. [BJ90]
    E.N. Barron and R. Jensen. Semicontinuous viscosity so-lutions of Hamilton-Jacobi equations with convex Hamiltonians. Comm. Partial Differential Equations, 15:1713–1742, 1990.MathSciNetMATHCrossRefGoogle Scholar
  24. [BaO82]
    T. Ba§ar and G. J. Olsder. Dynamic Non-Cooperative Game Theory. Academic Press, New York, 1982.Google Scholar
  25. [Be64]
    L.D. Berkovitz. A differential game with no pure strategy so-lution. In M. Dresher et al., Eds., Advances in Game Theory, volume 52 of Annals of Mathematical Studies, pages 175–194. Princeton University Press, Princeton, NJ, 1964.Google Scholar
  26. [Be94]
    L.D. Berkovitz. A theory of differential games. In T. Basar and A. Haurie, Eds., Advances in Dynamic Games and Applications, pp. 3–22. Birkhäuser, Boston, 1994.CrossRefGoogle Scholar
  27. [BPG93]
    M.H. Breitner, H.J. Pesch, and W. Grimm. Complex differential games of pursuit-evasion type with state constraints. i. Necessary conditions for optimal open-loop strategies. ii. Numerical computation of optimal open-loop strategies. J. Optim. Theory Appl., 78:419–463, 1993.MathSciNetMATHCrossRefGoogle Scholar
  28. [Cam96]
    F. Camilli Computation of the H, norm for nonlinear systems: a convergence result. Systems Control Lett., 28:139150, 1996.MathSciNetGoogle Scholar
  29. [CFa96]
    F. Camilli and M. Falcone. Approximation of optimal control problems with state constraints: estimates and applications. In B.S. Mordukhovic and Sussman H.J., Eds., Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, volume 78 of I.M.A. Volumes in Applied Mathematics, pp. 23–57. Springer, New York, 1996.Google Scholar
  30. [CFLS94]
    F. Camilli, M. Falcone, P. Lanucara, and A. Seghini. A domain decomposition method for Bellman equations. In D.E. Keyes and Xu J., editors, Domain Decomposition Methods in Scientific and Engineering Computing, volume 180 of Con-temp. Math., pp. 477–483. Amer. Math. Soc., 1994.CrossRefGoogle Scholar
  31. [CD83]
    I. Capuzzo Dolcetta. On a discrete approximation of the Hamilton—Jacobi equation of dynamic programming. Appl. Math. Optim., 10:367–377, 1983.MathSciNetCrossRefGoogle Scholar
  32. [CDI84]
    I. Capuzzo Dolcetta and H. Ishii. Approximate solutions of the Bellman equation of deterministic control theory. Appl. Math. Optim., 11:161–181, 1984.MathSciNetCrossRefGoogle Scholar
  33. [CDL97]
    I. Capuzzo Dolcetta and P.L. Lions, Eds. Viscosity solutions and applications (Montecatini, 1995), volume 1660 of Lecture Notes in Mathematics, Berlin, 1997. Springer.Google Scholar
  34. [CQS97]
    P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre. Set-valued numerical analysis for optimal control and differential games, Stochastic and Differential Games, 177–247, Birkhäuser Boston, 1999.Google Scholar
  35. [CEL84]
    M.G. Crandall, L.C. Evans, and P.L. Lions. Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 282:487–502, 1984.MathSciNetMATHCrossRefGoogle Scholar
  36. [CIL92]
    M.G. Crandall, H. Ishii, and P.L. Lions. User’s guide to vis-cosity solutions of second order partial differential equations. Bull. Amer. Math. Soc., 27:1–67, 1992.MathSciNetMATHCrossRefGoogle Scholar
  37. [CL83]
    M.G. Crandall and P.L. Lions. Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 277:142, 1983.MathSciNetCrossRefGoogle Scholar
  38. [CL84]
    M.G. Crandall and P.L. Lions. Two approximations of solu-tions of Hamilton-Jacobi equations. Math. Comp., 43:1–19, 1984.MathSciNetMATHCrossRefGoogle Scholar
  39. [DMG95]
    S. Di Marco and R.L.V. Gonzalez. Une procedure numerique pour la minimisation du cout maximum. C. R. Acad. Sci. Paris Sér. I Math., 321:869–873, 1995.MathSciNetMATHGoogle Scholar
  40. [EK72]
    P. Varaiya, R.J. Elliott, E. Roxin, and N.J. Kalton. The existence of value in differential games. Mem. Amer. Math. Soc., 126, 1972.Google Scholar
  41. [EK74]
    R.J. Elliott and N.J. Kalton. Cauchy problems for cer-tain Isaacs-Bellman equations and games of survival. Trans. Amer. Math. Soc., 198:45–72, 1974.MathSciNetMATHCrossRefGoogle Scholar
  42. [EI84]
    L.C. Evans and H. Ishii. Differential games and nonlinear first order PDE in bounded domains. Manuscripta Math., 49:109–139, 1984.MathSciNetMATHCrossRefGoogle Scholar
  43. [ES84]
    L.C. Evans and P.E. Souganidis. Differential games and repre-sentation formulas for solutions of Hamilton-Jacobi equations. Indiana Univ. Math. J., 33:773–797, 1984.MathSciNetMATHCrossRefGoogle Scholar
  44. [Fa87]
    M. Falcone. A numerical approach to the infinite horizon problem of deterministic control theory. Appl. Math. Optim., 15:1–13, 1987. Corrigenda in Appl. Math. Optim. 23: 213–214, 1991.MathSciNetCrossRefGoogle Scholar
  45. [Fa94]
    M. Falcone. The minimum time problem and its applications to front propagation. In A. Visintin and G. Buttazzo, editors, Motion by Mean Curvature and Related Topics, pp. 70–88. De Gruyter verlag, Berlin, 1994.Google Scholar
  46. [Fa97]
    M. Falcone. Numerical solution of Dynamic Programming equations, Appendix A. In Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston, 1997.Google Scholar
  47. [FaF94]
    M. Falcone and R. Ferretti. Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations. Numer. Math., 67:315–344, 1994.MathSciNetMATHCrossRefGoogle Scholar
  48. [FL95]
    M. Falcone and P. Lanucara. Parallel agorithms for Hamilton-Jacobi equations. In O. Marenholtz, K. Marti, and R. Men-nicken, Eds., Applied Stochastics and Optimization, volume 3 of ICIAM/GAMMJ95 Special Issue of Z. Angew. Math. Mech., pp. 355–359, 1998.Google Scholar
  49. [FLM98]
    M. Falcone, P. Lanucara, and M. Marinucci. Parallel algorithms for the Isaacs Equation. Dip. Mat. Università di Roma “La Sapienza,” October 1998, preprint.Google Scholar
  50. [FLS94]
    M. Falcone, P. Lanucara, and A. Seghini. A splitting algo-rithm for Hamilton-Jacobi-Bellman equations. Appl. Numer. Math., 15:207–218, 1994.MathSciNetMATHCrossRefGoogle Scholar
  51. [F61]
    W.H. Fleming. The convergence problem for differential games. J. Math. Anal. Appl., 3:102–116, 1961.MathSciNetMATHCrossRefGoogle Scholar
  52. [FM95]
    W.H. Fleming and W.M. McEneaney. Risk-sensitive control on an infinite time horizon. SIAM J. Control Optim., 33:1881–1915, 1995.MathSciNetMATHCrossRefGoogle Scholar
  53. [FS93]
    W.H. Fleming and H.M. Soner. Controlled Markov Processes and Viscosity Solutions. Springer, New York, 1993.MATHGoogle Scholar
  54. [Fr93]
    H. Frankowska. Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations. SIAM J. Control Optim., 31:257–272, 1993.MathSciNetMATHCrossRefGoogle Scholar
  55. [Fri71]
    A. Friedman. Differential Games. Wiley, New York, 1971.MATHGoogle Scholar
  56. [Fri74]
    A. Friedman. Differential Games, volume 18 of CBMS Re-gional Conf. Series in Math. American Math. Soc., Providence, R.I., 1974.Google Scholar
  57. [GTi90]
    R. Gonzalez and M.M. Tidball. Fast solutions of discrete Isaac’s inequalities. Technical Report 1167, INRIA, 1990.Google Scholar
  58. [GTi92]
    R.L.V. Gonzalez and M.M. Tidball. Sur l’ordre de conver-gence des solutions discrétisées en temps et en espace de l’équation de Hamilton-Jacobi. C. R. Acad. Sci. Paris Sér. I Math., 314:479–482, 1992.MathSciNetMATHGoogle Scholar
  59. [Gru97]
    L. Grune. An adaptive grid scheme for the discrete Hamilton-Jacobi—Bellman equation. Numer. Math., 75:319–337, 1997.MathSciNetCrossRefGoogle Scholar
  60. [Ha75]
    O. Hàjek. Pursuit Games. Academic Press, New York, 1975.MATHGoogle Scholar
  61. [Is65]
    R. Isaacs. Differential Games. Wiley, New York, 1965.MATHGoogle Scholar
  62. [I87a]
    H. Ishii. Perron’s method for Hamilton-Jacobi equations. Duke Math. J., 55:369–384, 1987.MathSciNetMATHCrossRefGoogle Scholar
  63. [189]
    H. Ishii. A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations. Ann. Sc. Norm. Sup. Pisa, (IV) 16:105–135, 1989.MATHGoogle Scholar
  64. [IK96]
    H. Ishii and S. Koike. A new formulation of state constraints problems for first order PDE’s. SIAM J. Control Optim., 36:554–571, 1996.MathSciNetCrossRefGoogle Scholar
  65. [Jam93]
    M.R. James. A partial differential inequality for dissipative nonlinear systems. Systems Control Lett., 21:315–320, 1993.MathSciNetMATHCrossRefGoogle Scholar
  66. [JY95]
    M.R. James and S. Yuliar. Numerical approximation of the H H∞, norm for nonlinear systems. Automatica J. IFAC, 31:1075–1086, 1995.MathSciNetMATHCrossRefGoogle Scholar
  67. [KSor96]
    M. Kocan and P. Soravia. Differential games and nonlinear H control in infinite dimensions. SIAM J. Control Optim., to appear.Google Scholar
  68. [KSS97]
    M. Kocan, P. Soravia, and A. Swiech. On differential games for infinite dimensional systems with nonlinear, unbounded operators. J. Math. Anal. Appl., 211:395–423, 1997.MathSciNetMATHCrossRefGoogle Scholar
  69. [K95]
    S. Koike. On the state constraint problem for differential games. Indiana Univ. Math. J., 44:467–487, 1995.MathSciNetMATHCrossRefGoogle Scholar
  70. [K574]
    N.N. Krasovskii and A.I. Subbotin. Positional Differential Games. Nauka, Moscow, 1974. (In Russian.) French transla-tion: Jeux differentiels, Mir, Moscou, 1979. Revised English edition: Game-Theoretical Control Problems, Springer, New York, 1988.MATHGoogle Scholar
  71. [LBP95]
    R. Lachner, M.H. Breitner, and H.J. Pesch. Three-dimensional air combat: numerical solution of complex differential games. In G.J. Olsder, Ed., New Trends in Dynamic Games and Application, pp. 165–190. Birkhäuser, Boston, 1995.CrossRefGoogle Scholar
  72. [Lew94]
    J. Lewin. Differential Games. Springer, London, 1994.CrossRefGoogle Scholar
  73. [L82]
    P.L. Lions. Generalized Solutions of Hamilton—Jacobi equa-tions. Pitman, Boston, 1982.Google Scholar
  74. [L83a]
    P.L. Lions. Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Part 1: The dynamic programming principle and applications; Part 2: Viscosity solutions and uniqueness. Comm. Partial Differential Equations, 8:1101–1174 and 1229–1276, 1983.MathSciNetMATHCrossRefGoogle Scholar
  75. [Mar95]
    M. Marinucci. Giochi differenziali: metodi numerici recenti e loro parallelizzazione. Tesi di laurea, Università di Roma, “La Sapienza,” 1995.Google Scholar
  76. [Mer71]
    A.W. Merz. The homicidal chauffer — a differential game. Technical report, Stanford University, Center for System Research, 1971.Google Scholar
  77. [Mer74]
    A.W. Merz. The homicidal chauffer. AIAA J., 12(3), 1974.Google Scholar
  78. [Pes94a]
    H.J. Pesch. A practical guide to the solution of real-life opti-mal control problems. Control Cybernetics, 23:7–60, 1994.MathSciNetMATHGoogle Scholar
  79. [Pes94b]
    H.J. Pesch. Solving optimal control and pursuit-evasion game problems of high complexity. In R. Bulirsch and D. Kraft, Eds., Computational Optimal Control, pp. 43–64. Birkhäuser, Basel, 1994.CrossRefGoogle Scholar
  80. [Rou92]
    E. Rouy. Numerical approximation of viscosity solutions of first order Hamilton-Jacobi equations with Neumann type boundary conditions. Math. Models Methods Appl. Sci., 2:357–374, 1992.MathSciNetMATHCrossRefGoogle Scholar
  81. [RS88]
    I. Rozyev and A.I. Subbotin. Semicontinuous solutions of Hamilton-Jacobi equations. J. Appl. Math. Mech., 52:141–146, 1988.MathSciNetMATHCrossRefGoogle Scholar
  82. [S86]
    H.M. Soner. Optimal control problems with state-space con-straints I and II. SIAM J. Control Optim., 24:551–561 and 1110–1122, 1986.Google Scholar
  83. [Sor92a]
    P. Soravia. Hölder continuity of the minimum time function for C’ manifold targets. J. Optim. Theory Appl., 75:401–421, 1992.MathSciNetMATHCrossRefGoogle Scholar
  84. [Sor92b]
    P. Soravia. The concept of value in differential games of sur-vival and viscosity solutions of Hamilton-Jacobi equations. Differential Integral Equations, 5:1049–1068, 1992.MathSciNetMATHGoogle Scholar
  85. [Sor93a]
    P. Soravia. Pursuit-evasion problems and viscosity solutions of Isaacs equations. SIAM J. Control Optim., 31:604–623, 1993.MathSciNetMATHCrossRefGoogle Scholar
  86. [Sor93b]
    P. Soravia. Discontinuous viscosity solutions to Dirichlet problems for Hamilton-Jacobi equations with convex Hamiltonians. Comm. Partial Differential Equations, 18:1493–1514, 1993.MathSciNetMATHCrossRefGoogle Scholar
  87. [Sor94a]
    P. Soravia. Generalized motion of a front along its normal direction: a differential games approach. Nonlinear Anal., 22:1247–1262, 1994.MathSciNetMATHCrossRefGoogle Scholar
  88. [Sor96a]
    P. Soravia. H control of nonlinear systems: Differential games and viscosity solutions. SIAM J. Control Optim., 34:1071–1097, 1996.MathSciNetMATHCrossRefGoogle Scholar
  89. [Sor96b]
    P. Soravia. Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations: I. Equations of unbounded and degenerate control problems without uniqueness; II. Equations of control problems with state constraints. Advances Differential Equations, to appear.Google Scholar
  90. [Sor97]
    P. Soravia. Nonlinear H H control, Appendix B. In Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston, 1997.Google Scholar
  91. [Sor97b]
    P. Soravia. Estimates of convergence of fully discrete schemes for the Isaacs equation of pursuit-evasion differential games via maximum principle. SIAM J. Control Optim., to appear.Google Scholar
  92. [Sou85a]
    P.E. Souganidis. Approximation schemes for viscosity solu-tions of Hamilton-Jacobi equations. J. Differential Equations, 57:1–43, 1985.MathSciNetCrossRefGoogle Scholar
  93. [Sou85b]
    P.E. Souganidis. Max-min representations and product formulas for the viscosity solutions of Hamilton-Jacobi equations with applications to differential games. Nonlinear Anal., 9:217–257, 1985.MathSciNetCrossRefGoogle Scholar
  94. [Sou97]
    P.E. Souganidis. Two-player, zero-sum differential games and viscosity solutions. In this volume, 1997.Google Scholar
  95. [Su93a]
    A.I. Subbotin. Discontinuous solutions of a Dirichlet type boundary value problem for first order partial differential equations. Russian J. Numer. Anal. Math. Modelling, 8:145–164, 1993.MathSciNetMATHGoogle Scholar
  96. [Su95]
    A.I. Subbotin. Generalized Solutions of First Order PDEs: The Dynamic Optimization Perspective. Birkhäuser, Boston, 1995.Google Scholar
  97. [Su97]
    A.I. Subbotin. Constructive theory of positional differential games and generalized solutions to Hamilton-Jacobi equations, Stochastic and Differential Games, 3–67, Birkhäuser Boston, 1999.Google Scholar
  98. [Ta94]
    A.M. Tarasyev. Approximation schemes for constructing min-imax solutions of Hamilton-Jacobi equations. J. Appl. Math. Mech., 58:207–221, 1994.MathSciNetCrossRefGoogle Scholar
  99. [Ta97]
    A.M. Tarasyev. Optimal control synthesis in grid approxi-mation schemes. Technical Report 12, I.I.A.S.A., Laxenburg, Austria, 1997.Google Scholar
  100. [Tí95]
    M.M. Tidball. Undiscounted zero sum differential games with stopping times. In G.J. Olsder, Ed., New Trends in Dynamic games and Applications, pp. 305–322. Birkhäuser, Boston, 1995.CrossRefGoogle Scholar
  101. [Wa72]
    J. Warga. Optimal Control of Differential and Functional Equations. Academic Press, New York, 1972.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Martino Bardi
    • 1
  • Maurizio Falcone
    • 2
  • Pierpaolo Soravia
    • 1
  1. 1.Dipartimento di Matematica, Pura e ApplicataUniversità di PadovaPadovaItaly
  2. 2.Dipartimento di MatematicaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations