Biocompatibility Issues

  • Paul de Vos
  • Reinout van Schilfgaarde


The possibility of transplanting cells in immunoprotective membranes for organ replacement dates back to 1933. At that time, Bisceglie (Bisceglie 1933) replaced the endogenous pancreas by transplanting insulin-producing tissue encapsulated in a semipermeable but immunoprotective membrane to study the effects of absence of vascularization on the survival of tissues. It took, however, until 1943 before the concept of immunoisolation was established by Algire (Algire 1943), who recognized that graft failure was delayed by encapsulating allo-and xenogenic tissues before transplantation. Algire was also the first to illustrate the importance of biocompatibility since he found that graft failure was always accompanied by cellular overgrowth of the membranes. At present, transplantation of cells in immunoisolating devices is under study for the treatment of a wide variety of diseases, including hemophilia B (Liu et al 1993), anemia (Koo and Chang 1993), dwarfism (Chang et al 1993), kidney (Cieslinski and Humes 1994) and liver (Uludag and Sefton 1993) failure, pituitary (Colton 1995) and central nervous system insufficiencies (Aebischer et al 1994), and diabetes mellitus (Lim and Sun 1980). When discussing biocompatibility aspects in this chapter, we will mainly focus on immunoisolation of pancreatic islets for the treatment of diabetes mellitus. We make this restriction for three reasons. The first is that most of the biocompatibility-related problems have been discovered in the application of immunoprotected insulin-producing cells, or the so-called bioartificial pancreas, probably as a consequence of the large number of groups involved in this type of research. Second, our own experience with biocompatibility research of immunoisolating capsules is mostly restricted to immunoprotected insulin-producing tissue. And third, most of the considerations regarding the biocompatibility of the bioartificial pancreas are also pertinent to other applications of immunoisolating devices.


Pancreatic Islet Hollow Fiber Islet Transplantation Islet Allograft Intravascular Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebischer P, Goddard M, Signore AP, Timpson RL. 1994. Functional recovery in hemiparkinsonian primates transplanted with polymer-encapsulated PC 12 cells. Exp Neurol 126:151–158.PubMedCrossRefGoogle Scholar
  2. Algire GH. 1943. An adaption of the transparent chamber technique to the mouse. J Natl Cancer Inst 4:1–11.Google Scholar
  3. Archer J, Kaye R, Mutter G. 1980. Control of streptozotocin diabetes in Chinese hamsters by cultured mouse islet cells without immunosuppression: a preliminary report. J Surg Res 28:77–85.PubMedCrossRefGoogle Scholar
  4. Bisceglie VV. 1933. Über die antineoplastische Immunität. Krebsforsch 40:141–158.CrossRefGoogle Scholar
  5. Brunetti P, Basta G, Faloerni A, Calcinaro F, Pietropaolo M, Calafiore R. 1991. Immunoprotection of pancreatic islet grafts within artificial microcapsules. Int J Artif Organs 14:789–791.PubMedGoogle Scholar
  6. Bystricky S, Malovikova A, Sticzay T. 1990. Interaction of alginate and pectins with cationic polypeptides. CarbohydrRes 13:283–294.CrossRefGoogle Scholar
  7. Bystricky S, Malovikova A, Sticzay T. 1991. Interaction of acid polysaccharides with polylysine enantiomers, conformation probe in solution. Carbohydrate Polymers 15:299–308.CrossRefGoogle Scholar
  8. Chang PL, Shen N, Westcott AJ. 1993. Delivery of recombinant gene products with microencapsulated cells in vivo. Hum Gene Ther 4:433–440.PubMedCrossRefGoogle Scholar
  9. Chang PL, Hortelano G, Tse M, Awrey DE. 1994. Growth of recombinant fibroblasts in alginate microcapsules. Biotech Bioeng 43:925–933.CrossRefGoogle Scholar
  10. Chick WL, Like AA, Lauris V. 1975. Beta cell culture on synthetic capillaries: an artificial endocrine pancreas. Science 187:847–849.PubMedCrossRefGoogle Scholar
  11. Cieslinski DA, Humes HD. 1994. Tissue engineering of a bioartificial kidney. Biotechnol Bioeng 43:678–681.PubMedCrossRefGoogle Scholar
  12. Clayton HA, London NJM, Colloby PS, Bell PRF, James RFL. 1991. The effect of capsule composition on the biocompatibility of alginate-poly-1-lysine capsules. J Microencapsulation 8:221–233.PubMedCrossRefGoogle Scholar
  13. Colton CK. 1995. Implantable biohybrid artificial organs. Cell Transplantation 4:415–436.PubMedCrossRefGoogle Scholar
  14. Colton CK, Avgoustiniatos ES. 1991. Bioengineering in development of the hybrid artificial pancreas. J BiomechEng 113:152–170.CrossRefGoogle Scholar
  15. Dawson RM, Broughton RL, Stevenson WT, Sefton MV. 1987. Microencapsulation of CHO cells in a hydroxyethyl methacrylate-methyl methacrylate copolymer. Biomaterials 8:360–366.PubMedCrossRefGoogle Scholar
  16. De Vos P, Wolters GH, Fritschy WM, Van Schilfgaarde R. 1993. Obstacles in the application of microencapsulation in islet transplantation. Int J Artif Organs 16:205–212.PubMedGoogle Scholar
  17. De Vos P, De Haan BJ, Pater J, Van Schilfgaarde R. 1996a. Association between capsule diameter, adequacy of encapsulation, and survival of microencapsulated rat islet allografts. Transplantation 62:893–899.PubMedCrossRefGoogle Scholar
  18. De Vos P, De Haan BJ, Wolters GHJ, Van Schilfgaarde R. 1996b. Factors influencing the adequacy of microencapsulation of rat pancreatic islets. Transplantation 62:888–893.PubMedCrossRefGoogle Scholar
  19. De Vos P, De Haan B, Van Schilfgaarde R. 1997a. Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules. Biomaterials 18:273–278.PubMedCrossRefGoogle Scholar
  20. De Vos P, De Haan BJ, Wolters GHJ, Strubbe JH, Van Schilfgaarde R. 1997b. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia 40:262–270.PubMedCrossRefGoogle Scholar
  21. Fritschy WM, Wolters GH, Van Schilfgaarde R. 1991. Effect of alginate-polylysine-alginate microencapsulation on in vitro insulin release from rat pancreatic islets. Diabetes 40:37–43.PubMedCrossRefGoogle Scholar
  22. Fritschy WM, De Vos P, Groen H, Klatter FA, Pasma A, Wolters GH, Van Schilfgaarde R. 1994. The capsular overgrowth on microencapsulated pancreatic islet grafts in streptozotocin and autoimmune diabetic rats. Transplint 7:264–271.Google Scholar
  23. Galletti PM, Trudell LA, Panol G, Richardson PD, Whittemore A. 1981. Feasibility of small bore AV shunts for hybrid artificial organs in nonheparinized beagle dogs. Trans Am Soc Artif Intern Organs 27:185–187.PubMedGoogle Scholar
  24. Iwata H, Amemiya H, Matsuda T, Takano H, Hayashi R, Akutsu T. 1989. Evaluation of microencapsulated islets in agarose gel as bioartificial pancreas by studies of hormone secretion in culture and by xenotransplantation. Diabetes 38 Suppl 1:224–225.PubMedGoogle Scholar
  25. Kessler L, Pinget M, Aprahamian M, Dejardin P, Damge C. 1991. In vitro and in vivo studies of the properties of an artificial membrane for pancreatic islet encapsulation. Horm Metab Res 23:312–317.PubMedCrossRefGoogle Scholar
  26. Kessler L. 1992. Diffusion properties of an artificial membrane used for Langerhans islets encapsulation: an in vitro test. Biomaterials 13:44–49.PubMedCrossRefGoogle Scholar
  27. Kessler L, Legeay G, West R, Beicourt A, Pinget M. 1997. Physicochemical and biological studies of corona-treated artificial membranes used for pancreatic islets encapsulation: Mechanism of diffusion and interface modification. J Biomed Mater Res 34:235–245.PubMedCrossRefGoogle Scholar
  28. King GA, Daugulis AJ, Faulkner P, Goosen MFA. 1987. Alginate-polylysine microcapsules of controlled membrane molecular weight cutoff for mammalian cell culture engineering. Biotechnol Prog 3:231–240.CrossRefGoogle Scholar
  29. Klomp GF, Ronel SH, Hashiguchi H, D’ Andrea M, Dobelle WH. 1979. Hydrogels for encapsulation of pancreatic islet cells. Trans Am Soc Artif Intern Organs 25:74–76.PubMedCrossRefGoogle Scholar
  30. Koo J, Chang TSM. 1993. Secretion of erythropoietin from microencapsulated rat kidney cells. Int J Artif Organs 16:557–560.PubMedGoogle Scholar
  31. Krause TJ, Robertson FM, Liesch JB, Wasserman AJ, Grecos RS. 1990. Differential production of IL-1 on the surface of biomaterials. Arch Surg 125:1158–1160.PubMedCrossRefGoogle Scholar
  32. Lacy PE, Hegre OD, Gerasimidi Vazeou A, Gentile FT, Dionne KE. 1991. Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 254:1782–1784.PubMedCrossRefGoogle Scholar
  33. Lanza RP, Borland KM, Staruk JE, Appel MC, Solomon BA, Chick WL. 1992a. Transplantation of encapsulated canine islets into spontaneously diabetic BB/Wor rats without immunosuppression. Endocrinology 131:637–642.PubMedCrossRefGoogle Scholar
  34. Lanza RP, Sullivan SJ, Chick WL. 1992b. Perspectives in diabetes. Islet transplantation with immunoisolation. Diabetes 41:1503–1510.PubMedCrossRefGoogle Scholar
  35. Lanza RP, Beyer AM, Chick WL. 1994. Xenogeneic humoral responses to islets transplanted in biohybrid diffusion chambers. Transplantation 57:1371–1375.PubMedCrossRefGoogle Scholar
  36. Lanza RP, Ecker DM, Kühtreiber WM, Marsh JP, Chick WL. 1995a. Simple and inexpensive method for transplanting xenogeneic cells and tissues into rats using alginate gel spheres. Transplant Proc 27:3322.PubMedGoogle Scholar
  37. Lanza RP, KÜhtreiber WM, Ecker DM, Marsh JP, Chick WL. 1995b. Successful bovine islet xenografts in rodents and dogs using injectable microreactors. Transplant Proc 27:3211.PubMedGoogle Scholar
  38. Lanza RP, Kühtreiber WM, Ecker DM, Marsh JP, Staruk JE, Chick WL. 1996. A simple method for xenotransplanting cells and tissues into rats using uncoated alginate microreactors. Transplant Proc 28:835.PubMedGoogle Scholar
  39. Lanza RP, Chick WL. 1997. Immunoisolation: At a turning point. Immunology Today 18:135–139.PubMedCrossRefGoogle Scholar
  40. Lim F, Sun AM. 1980. Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910.PubMedCrossRefGoogle Scholar
  41. Liu HW, Ofosu FA, Chang PL. 1993. Expression of human factor IX by microencapsulated recombinant fibroblasts. Hum Gene Ther 4:291–301.PubMedCrossRefGoogle Scholar
  42. Lum ZP, Krestow M, Tai IT, Vacek I, Sun AM. 1992. Xenografts of rat islets into diabetic mice. Transplantation 53:1180–1183.PubMedCrossRefGoogle Scholar
  43. Maki T, Lodge JP, Carretta M, Ohzato H, Borland KM, Sullivan SJ, Staruk J, Muller TE, Solomon BA, Chick WL. 1993. Treatment of severe diabetes mellitus for more than one year using a vascularized hybrid artificial pancreas. Transplantation 55:713–717.PubMedCrossRefGoogle Scholar
  44. Maki T, Mullon CJ, Solomon BA, Monaco AP. 1995. Novel delivery of pancreatic islet cells to treat insulin-dependent diabetes mellitus. Clin Pharmackinet 28:471–482.CrossRefGoogle Scholar
  45. Maki T, Otsu I, O’Neil JJ, Dunleavy K, Mullon CJP, Solomon BA, Monaco AP. 1996. Treatment of diabetes by xenogeneic islets without immunosuppression— Use of a vascularized bioartificial pancreas. Diabetes 45:342–347.PubMedCrossRefGoogle Scholar
  46. Metrakos P, Yuan S, Qi SJ, Duguid WP, Rosenberg L. 1994. Collagen gel matrix promotes islet cell proliferation. Transplant Proc 26:3349–3350.PubMedGoogle Scholar
  47. O’Shea GM, Goosen MFA, Sun AM. 1984. Prolonged survival of transplanted islets of Langerhans encapsulated in a biocompatible membrane. Biochim Biophys Acta 804:133–136.PubMedCrossRefGoogle Scholar
  48. O’Shea GM, Sun AM. 1986. Encapsulation of rat islets of Langerhans prolongs xenograft survival in diabetic mice. Diabetes 35:943–946.PubMedCrossRefGoogle Scholar
  49. Remes A, Williams DF. 1991. Immune response in biocompatibility. Biomaterials 13:731–743.CrossRefGoogle Scholar
  50. Scharp DW, Mason NS, Sparks RE. 1984. Islet immunoisolation: the use of hybrid artificial organs to prevent islet tissue rejection. World J Surg 8:221–229.PubMedCrossRefGoogle Scholar
  51. Scharp DW, Swanson CJ, Olack BJ, Latta PP, Hegre OD, Doherty EJ, Gentile FT, Flavin KS, Ansara MF, Lacy PE. 1994. Protection of encapsulated human islets implanted without immunosuppression in patients with Type I or Type II diabetes and in nondiabetic control subjects. Diabetes 43:1167–1170.PubMedCrossRefGoogle Scholar
  52. Sefton MV. 1993. The good, the bad and the obvious: 1993 Clemson Award for Basic Research—Keynote Lecture. Biomaterials 14:1127–1134.PubMedCrossRefGoogle Scholar
  53. Sevastianov VI, Tseytkina EA. 1984. The activation of the complement system by polymer materials and their blood compatibility. J Biomed Mater Res 18:969–978.CrossRefGoogle Scholar
  54. Shimi SM, Hopwood D, Newman EL, Cuschieri A. 1991. Microencapsulation of human cells: its effect on growth of normal and tumour cells in vitro. Br J Cancer 63:675–680.PubMedCrossRefGoogle Scholar
  55. Shoichet MS, Winn SR, Athavale S, Harris JM, Gentile FT. 1994. Poly(ethylene oxide)-grafted thermoplastic membranes for use as cellular hybrid bio-artificial organs in the central nervous system. Biotech Bioeng 43:563–572.CrossRefGoogle Scholar
  56. Siebers U, Zekorn T, Bretzel RG, Planck H, Renardy M, Zschocke P, Federlin K. 1990. Histocompatibility of semipermeable membranes for implantable diffusion devices (bioartificial pancreas). Transplant Proc 22:834–835.PubMedGoogle Scholar
  57. Smidsrød O, Skjåk-Bræk G. 1990. Alginate as immobilization matrix for cells. Trends in Biotechnology 8:71–78.PubMedCrossRefGoogle Scholar
  58. Soon Shiong P, Feldman E, Nelson R, Komtebedde J, Smidsrød O, Skjåk-Bræk G, Espevik T, Heintz R, Lee M. 1992. Successful reversal of spontaneous diabetes in dogs by intraperitoneal microencapsulated islets. Transplantation 54:769–774.CrossRefGoogle Scholar
  59. Soon Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T, Murphy M, Moloney MK, Schmehl M, Harris M. 1994. Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343:950–951.CrossRefGoogle Scholar
  60. Soon Shiong P, Otterlei M, Skjåk-Bræk G, Smidsrèd O, Heintz R, Lanza RP, Espevik T. 1991. An immunological basis for the fibrotic reaction to implanted microcrocapsules. Transplant Proc 23:758–759.Google Scholar
  61. Strautz RL. 1970. Studies of hereditary-obese mice (obob) after implantation of pancreatic islets in Millipore filter capsules. Diabetologia 6:306–312.PubMedCrossRefGoogle Scholar
  62. Sun AM, Parisius W, Healy GM, Vacek I, Macmorine HG. 1977. The use, in diabetic rats and monkeys, of artificial capillary units containing cultured islets of Langerhans (artificial endocrine pancreas). Diabetes 26:1136–1139.PubMedCrossRefGoogle Scholar
  63. Sun YL, Ma X, Zhou D, Vacek I, Sun AM. 1993. Porcine pancreatic islets: isolation, microencapsulation, and xenotransplantation. Artif Organs 17:727–733.PubMedCrossRefGoogle Scholar
  64. Sun YL, Ma XJ, Zhou DB, Vacek I, Sun AM. 1996. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest 98:1417–1422.PubMedCrossRefGoogle Scholar
  65. Thu B, Bruheim P, Espevik T, Smidsrød O, Soon Shiong P, Skjåk-Bræk G. 1996a. Alginate polycation microcapsules. I. Interaction between alginate and polycation. Biomaterials 17:1031–1040.PubMedCrossRefGoogle Scholar
  66. Thu B, Bruheim P, Espevik T, Smidsrød O, Soon Shiong P, Skjåk-Bræk G. 1996b. Alginate polycation microcapsules II. Some functional properties. Biomaterials 17:1069–1079.PubMedCrossRefGoogle Scholar
  67. Uludag H, Sefton MV. 1993. Microencapsulated human hepatoma (HepG2) cells: in vitro growth and protein release. J Biomed Mater Res 27:1213–1224.PubMedCrossRefGoogle Scholar
  68. Vandenbossche GMR, Van Oostveld P, Demeester J, Remon JP. 1993. The molecular weight cut-off of microcapsules is determined by the reaction betweem alginate and polylysine. Biotechnol Bioeng 42:381–386.PubMedCrossRefGoogle Scholar
  69. Wahoff DC, Stephanian E, Gores PF, Soon Shiong P, Hower C, Lloveras JK, Sutherland DER. 1994. Intraperitoneal transplantation of microencapsulated ca islet allografts with short-term, low-dose cyclosporine for treatment of pancreatectomy-induced diabetes in dogs. Transplant Proc 26:804.PubMedGoogle Scholar
  70. Wells GD, Fisher MM, Sefton MV. 1993. Microencapsulation of viable hepatocytes in HEMA-MMA microcapsules: a preliminary study. Biomaterials 14:615–620.PubMedCrossRefGoogle Scholar
  71. Wijsman J, Atkison P, Mazaheri R, Garcia B, Paul T, Vose J, O’Shea GM, Stiller C. 1992. Histological and immunopathological analysis of recovered encapsulated allogeneic islets from transplanted diabetic BB/W rats. Transplantation 54:588–592.PubMedCrossRefGoogle Scholar
  72. Williams DF. 1987. Summary and definitions. In: Progress in biomedical engineering: Definition in biomaterials (4). Amsterdam: Elsevier Science Publisher BV, pp. 66–71.Google Scholar
  73. Woodward SC. 1982. How fibroblasts and giant cells encapsulate implants: considerations in design of glucose sensors. Diabetes Care 5:278–281.PubMedCrossRefGoogle Scholar
  74. Zekorn T, Siebers U, Filip L, Mauer K, Schmitt U, Bretzel RG, Federlin K. 1989. Bioartificial pancreas: the use of different hollow fibers as a diffusion chamber. Transplant Proc 21:2748–2750.PubMedGoogle Scholar
  75. Zekorn T, Siebers U, Horcher A, Federlin K. 1994. Experimental and clinical islet transplantation; Bioartificial pancreas; Satellite Symposium on the occasion of the 29th Annual Meeting of the German Diabetes Society; Berlin, May 11, 1994. Exp Clin Endocrinol 102:Al–A8.Google Scholar
  76. Zhou D, Sun YL, Vacek I, Ma P, Sun AM. 1994. Normalization of diabetes in cynomologus monkeys by xenotransplantation of microencapsulated porcine islets. Transplant Proc 26:1091.PubMedGoogle Scholar
  77. Zielinski BA, Aebischer P. 1994. Chitosan as a matrix for mammalian cell encapsulation. Biomaterials 15:1049–1056.PubMedCrossRefGoogle Scholar
  78. Zimmermann U, Klöck G, Federlin K, Hannig K, Kowalski M, Bretzel RG, Horcher A, Entenmann H, Sieber U, Zekorn T. 1992. Production of mitogencontamination free alginates with variable ratios of mannuronic acid to guluronic acid by free flow electrophoresis. Electrophoresis 13:269–274.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Paul de Vos
  • Reinout van Schilfgaarde

There are no affiliations available

Personalised recommendations