Skip to main content

Abstract

There is a genuine need in the biotechnology industry for the capability of growing, cheaply and efficiently, normal, untransformed, anchorage-dependent animal cells on a large scale. This need exists for the unique products that these cells may be capable of synthesizing, and in the case of esoteric cell types, such as chondrocytes, hepatocytes, etc., for the very cells themselves, as well as for the advantages inherent in the use of normal cells in biotechnology manufacturing. Unlike transformed cells, normal cells do not secrete large amounts of proteases nor produce truncated carbohydrate side chains; they do not harbor oncogenic viruses or activated oncogenes, which pose problems of regulatory and safety issues, and, at least theoretically, they should be able to continue to produce large amounts of protein while in the quiescent, noncycling state—the ideal condition for most efficient synthetic protein production. Unfortunately, unlike transformed cells, most normal animal cells are unable to grow in suspension, but require attachment to a solid substratum or extracellular matrix (anchorage-dependence). This makes their large-scale cultivation extremely costly and technically difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebischer P, Tresco PA, Winn SR, Greene LA, Jaeger CB. 1991. Long-term cross-species brain transplantation of a polymer-encapsulated dopamine-secreting cell line. Exptl Neurol 111:269–275.

    Article  CAS  Google Scholar 

  • Bellamkonda R, Ranieri JP, Aebischer P. 1995. Laminin oligopeptide derivatized agarose gels allow threedimensional neurite extension in vitro. J Neurosci Res 41:501–509.

    Article  PubMed  CAS  Google Scholar 

  • Croughan MS, Hamel J-F, Wang DIC. 1987. Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol Bioeng 29:130–141.

    Article  PubMed  CAS  Google Scholar 

  • Croughan MS, Wang, DIC. 1989. Growth and death in overagitated microcarrier cell cultures. Biotechnol Bioeng 33:731–744.

    Article  PubMed  CAS  Google Scholar 

  • Galletti PM, Aebischer P, Lysaght MJ. 1995. The dawn of biotechnology in artificial organs. ASAIO J. 41(1):49–57.

    PubMed  CAS  Google Scholar 

  • Gillies SD, Dorai H, Wesolowski J, Majeau G, Young D, Boyd J, Gardner J, James K. 1989. Expression of human anti-tetanus toxoid antibody in transfected murine myeloma cells. Biotechnol 7:799–804.

    Article  CAS  Google Scholar 

  • Jarvis Jr. AP, Grdina TA. 1983. Production of biologicals from microencapsulated living cells. Biotechniques 1:24–30.

    Article  Google Scholar 

  • Lim F, Moss RD. 1981. Microencapsulation of living cells and tissues. J Pharm Sei 70:351–354.

    Article  CAS  Google Scholar 

  • Matthew HWT, Basu S, Peterson WD, Salley SO, Klein MD. 1993a. Performance of plasma-perfused, microencapsulated hepatocytes: prospects for extracorporeal liver support. J Pediatr Surg 28(11):1423–1428.

    Article  PubMed  CAS  Google Scholar 

  • Matthew HW, Salley SO, Peterson WD, Klein MD. 1993b. Complex coacervate microcapsules for mammalian cell culture and artificial organ development. Biotechnol Prog 9:510–519.

    Article  PubMed  CAS  Google Scholar 

  • Posillico EG. 1986. Microencapsulation technology for large-scale antibody production. Bio/Technol 4:114–117.

    Article  CAS  Google Scholar 

  • Reuveny S. 1985. Microcarriers in cell culture: structure and applications. Adv Cell Cult 4:213–247.

    Google Scholar 

  • Rupp RG. 1985. Use of cellular microencapsulation in large scale production of monoclonal antibodies. In: Feder J, Tolbert W, editors. Large scale mammalian cell culture. New York: Academic Press, p 19–38.

    Google Scholar 

  • Rupp RG, Geyer SD. 1984. Preparation of medium for largescale hybridoma culture. J Tiss Cult Meth 8:141–146.

    Article  Google Scholar 

  • Sun Y-L, Ma X, Zhou D, Vacek I, Sun AM. 1993. Porcine pancreatic islets: isolation, microencapsulation, and xenotransplantation. Artif Organs 17(8):727–733.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka T, Hirano R, Shioya T, Kako M. 1990. Encapsulation of mammalian cell with chitosan-CMC capsule. Biotechnol Bioeng 35:66–72.

    Article  PubMed  CAS  Google Scholar 

  • Young DV, Dobbels S, King L, Deer F, Gillies SD. 1989. Inverted microcarriers: using microencapsulation to grow anchorage-dependent cells in suspension. BioPharm 2:34–46.

    CAS  Google Scholar 

  • Young DV. 1992. Inverted microcarriers: Using microencapsulation to grow anchorage-dependent cells. In: Goosen MFA, editor. Fundamentals of animal cell encapsulation and immobilization. Boca Raton, Florida: CRC Press, p 243–265.

    Google Scholar 

  • Zielinski BA, Aebischer P. 1994. Chitosan as a matrix for mammalian cell encapsulation. Biomaterials 15(13):1049–1056.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Young, D.V. (1999). Culture of Anchorage-Dependent Cells. In: Kühtreiber, W.M., Lanza, R.P., Chick, W.L. (eds) Cell Encapsulation Technology and Therapeutics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1586-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1586-8_31

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7205-2

  • Online ISBN: 978-1-4612-1586-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics