Skip to main content
  • 417 Accesses

Abstract

Diffusion chambers include a diversity of planar and tubular configurations, including flat sheets, disks, hollow fibers and wide-bore tubes.1–5 Although various device designs have been studied for nearly half a century, these experiments have been performed mainly in rodents, and only recently has any progress with the diffusion chamber technique been reported in large animals.6 In the late 1940s/early 1950s, Algire and coworkers7–9 first transplanted cells enclosed in Millipore diffusion chambers into mice, in order to study the mechanisms of cellular immune rejection. The viability of the implanted tissue was severely compromised by fibrous overgrowth of the extracapillary-situated chambers. Subsequent studies with islet allografts and xenografts in rodents were equally discouraging 10–17 Although partial or transient normoglycemia was achieved in some studies, the outer membrane surface was rapidly covered by fibrosis, and islet survival was not observed after a few weeks of transplantation. Furthermore, Theodorou and Howell18 investigated the in vitro glucoseinsulin transfer kinetics of this kind of macroencapsulation device and found that the transit half-time of insulin (almost an hour) was less than optimal for physiologic regulation of blood glucose concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colton CK 1995. Implantable biohybrid artificial organs. Cell Transplant 4:415–436.

    Article  PubMed  CAS  Google Scholar 

  2. Lanza RP, Hayes JL, Chick WL. 1996. Encapsulated cell technology. Nature Biotechnology 14:1107–1111.

    Article  PubMed  CAS  Google Scholar 

  3. Mikos AG, Papadaki MG, Kouvroukoglou S, Ishaug SL, Thomson RC. 1994. Mini-review: Islet transplantation to create a bioartificial pancreas. Biotech Bioeng 43:673–677.

    Article  CAS  Google Scholar 

  4. Zielinski BA, Goddard MB, Lysaght MJ. 1997. Immunoisolation. In: Principles of tissue engineering (Lanza RP, Langer R and Chick WL, eds) pp. 321–326,San Diego: Academic Press.

    Google Scholar 

  5. Lanza RL, Chick WL. 1997. Transplantation of encapsulated cells and tissues. Surgery 121:1–9.

    Article  PubMed  CAS  Google Scholar 

  6. Lanza RP, Borland KM, Lodge P, et al. 1992. Treatment of severely diabetic, pancreatectomized dogs using a diffusion-based hybrid pancreas. Diabetes 41:886.

    Article  PubMed  CAS  Google Scholar 

  7. Algire GH, Legallais FY. 1949. Recent developments in the transplant chamber technique as adapted to the mouse. J Natl Cancer Inst 10:225–253.

    PubMed  CAS  Google Scholar 

  8. Algire GH, Weaver JM, Prehn RT. 1954. Growth of cells in vivo in diffusion chambers. I. Survival of homografts in immunized mice. J Natl Cancer Inst 15:493–507.

    PubMed  CAS  Google Scholar 

  9. Prehn RT, Weaver JM, Algire GH. 1954. The diffusion-chamber technique applied to a study of the nature of homograft resistance. J Natl Cancer Inst 15:509–17.

    PubMed  CAS  Google Scholar 

  10. Garvey JF, Morris PJ, Finch DR, et al. 1979. Experimental pancreas transplantation. Lancet 971–972.

    Google Scholar 

  11. Theodorou NA, Vrbova H, Tyhurst M, Howell SL. 1980. Problems in the use of polycarbonate diffusion chambers for syngeneic pancreatic islet transplantation in rats. Diabetologia 18:313–317.

    Article  PubMed  CAS  Google Scholar 

  12. Strautz RL. 1970. Studies of hereditary-obese mice (ob/ob) after implantation of pancreatic islets in Millipore filter capsules. Diabetologia 6:306–312.

    Article  PubMed  CAS  Google Scholar 

  13. Weber C, Weil R, Mclntosh R, et al. 1975. Xenotransplantation of porcine islets into hyperglycEmie rats. Surgery 77:208–215.

    PubMed  CAS  Google Scholar 

  14. Buschard K. 1975. Cultivation of islets of Langerhans in Millipore chambers in vivo. Horm Metab Res 7:441–442.

    Article  PubMed  CAS  Google Scholar 

  15. Jolley WB, Hinshaw DB, Call TW, Alverel LS. 1977. Xenogeneic pancreatic islet transplantation in proteolytic enzyme bonded diffusion chambers in diabetic rats. Transplant Proc 9:363–365.

    PubMed  CAS  Google Scholar 

  16. Andersson A. 1979. Survival of pancreatic islet allografts. Lancet 2:585.

    Article  Google Scholar 

  17. Valente U, Ferro M, Campisi C, et al. 1981. Islet transplantation by means of artificial membrane chambers in diabetic recipients. Artif Organs 5(Suppl):780–783.

    Google Scholar 

  18. Theodorou NA, Howell SL. 1979. An assessment of diffusion chambers for use in pancreatic islet cell transplantation. Transplantation 27:350–352.

    PubMed  CAS  Google Scholar 

  19. Brauker JH, Carr-Brendel VE, Martinson LA, et al. 1995. Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mat Res 29:1517.

    Article  CAS  Google Scholar 

  20. Brauker J, Martinson LA, Young SK, and Johnson RC. 1996. Local inflammatory response around diffusion chambers containing xenografts. Transplantation 61:1671–1677.

    Article  PubMed  CAS  Google Scholar 

  21. Dionne K, Scharp D, Lysaght MJ, Hegre O, Lacy P. 1994 Macroencapsulation of islets for the treatment of diabetes. In: Pancreatic islet transplantation Volume III: Immunoisolation of pancreatic islets (Lanza RP and Chick WL, eds) pp. 119–131, Austin, Texas: RG Landes Company.

    Google Scholar 

  22. Suzuki K, Bonner-Weir S, Hollister J, Weir GC. 1996. A method for estimating number and mass of islets transplanted within a membrane device. Cell Transplant 5:613–625.

    Article  PubMed  CAS  Google Scholar 

  23. Loudovaris T, Mandel TE, Charlton B. 1996. CD4+ T cell mediated destruction of xenografts within cellimpermeable membranes in the absence of CD8+ T cells and B cells. Transplantation 61:1678–1684.

    Article  PubMed  CAS  Google Scholar 

  24. Woodward CL. 1982. How fibroblasts and giant cells encapsulate implants: Considerations in design of glucose sensors. Diabetes Care 5:278.

    Article  PubMed  CAS  Google Scholar 

  25. Altman JJ, Houlbert D, Bruzzo F, et al. 1982. Implantation of semipermeable hollow fibers to prevent immune rejection of transplanted pancreatic islets. In: Islet-pancreas-transplantation and artificial pancreas (Federlin K, Pfeiffer E, Raptis S, eds) New York: Thieme-Stratton.

    Google Scholar 

  26. Altman JJ, Houlbert D, Callard P, et al. 1986. Longterm plasma glucose normalization in experimental diabetic rats with microencapsulated implants of benign human insulinomas. Diabetes 35:625.

    Article  PubMed  CAS  Google Scholar 

  27. Archer J, Kaye R, Matter G. 1980. Control of streptozotocin diabetes in Chinese hamsters by cultured mouse islet cells without immunosuppression. J Surg Res 28:77.

    Article  PubMed  CAS  Google Scholar 

  28. Icard P, Penfornis F, Gotheil C, et al 1990. Tissue reaction to implanted bioartificial pancreas in pigs. Transplant Proc 22:724.

    PubMed  CAS  Google Scholar 

  29. Lanza RP, Butler DH, Borland KM et al 1991. Xenotransplantation of canine, bovine, and porcine islets in diabetic rats without immunosuppression. Proc Natl Acad Sei USA 88:11100.

    Article  CAS  Google Scholar 

  30. Lanza RP, Butler DH, Borland KM, et al 1992. Successful xenotransplantation of a diffusion-based biohybrid artificial pancreas: A study using canine, bovine, and porcine islets. Transplant Proc 24:669.

    PubMed  CAS  Google Scholar 

  31. Lanza RP, Borland KM, Staruk JE, et al 1992. Transplantation of encapsulated canine islets into spontaneously diabetic BB/Wor rats without imunosuppression. Endocrinology 131:637.

    Article  PubMed  CAS  Google Scholar 

  32. Lanza RP, Beyer AM, Staruk JE, Chick WL. 1993. Biohybrid artificial pancreas: Longterm function of discordant islet xenografts in streptozotocin diabetic rats. Transplantation 56:1067.

    Article  PubMed  CAS  Google Scholar 

  33. Theodorou NA, Vrbova H, Tyhurst M, et al 1979. An assessment of diffusion chambers for use in pancreatic islet cell transplantation. Transplantation 27:350.

    PubMed  CAS  Google Scholar 

  34. Andersson A. Survival of pancreatic islet allografts 1979. Lancet 2:585.

    Article  Google Scholar 

  35. Kraegen EW, Chisholm DJ, MacNamara ME. 1981. Timing of insulin delivery with meals. Horm Metab Res 13:365.

    Article  PubMed  CAS  Google Scholar 

  36. Lanza RP, Lodge P, Borland KM, et al 1993. Transplantation of islet allografts using a diffusion-based biohybrid artificial pancreas: long-term studies in diabetic, pancreatectomized dogs. Transplant Proc 25:978.

    PubMed  CAS  Google Scholar 

  37. Lanza RP, Beyer AM, Chick WL. 1994. Xenogeneic humoral responses to islets transplanted in biohybrid diffusion chambers. Transplantation 57:1371.

    Article  PubMed  CAS  Google Scholar 

  38. Lanza RP, Kühtreiber WM, Beyer A, et al 1994. Humoral response to encapsulated islets. Transplant Proc 26:3346.

    PubMed  CAS  Google Scholar 

  39. Theofilopoulos AN, Dixon FJ. 1979. The biology and detection of immune complexes. Adv Immunol 28:89.

    Article  PubMed  CAS  Google Scholar 

  40. Wilson CB, Dixon FJ. 1971. Quantification of acute and chronic serum sickness in the rabbit. J Exp Med 134:7S.

    Article  PubMed  CAS  Google Scholar 

  41. Benacerraf B, Sebestyen M, Cooper HS. 1959. The clearance of antigen-antibody complexes from the blood by the reticulo-endothelial system. J Immunol 82:131.

    PubMed  CAS  Google Scholar 

  42. Cochrane CG, Koffler D. 1973. Immune complex disease in experimental animals and man. Adv Immunol 16:185.

    Article  PubMed  CAS  Google Scholar 

  43. Kijlstra A, Van Der Lelij A, Knutson DW, et al 1978. The influence of phagocyte function on glomerular localization of aggregated IgG in rats. Clin Exp Immunol 32:207.

    PubMed  CAS  Google Scholar 

  44. Haakenstad AO, Mannik M. 1974. Saturation of the reticuloendothelial system with soluble immune complexes. J Immunol 112:1939.

    PubMed  CAS  Google Scholar 

  45. Austen KF. 1991. Diseases of immediate type hypersensitivity. In: Harrison’s principles of internal medcine, 12th edition (Wilson JD, Braunwald KJ, Isselbacher KJ, eds) New York: McGraw-Hill, p. 1422.

    Google Scholar 

  46. Sasazuki T, Kohno Y, Iwamoto I, et al 1978. Association between an HLA haplotype and low responsiveness to tetanus toxiod in man. Nature 272:359.

    Article  PubMed  CAS  Google Scholar 

  47. de Vries RP, Kreeftenberg HG, Loggen HG, et al 1977. In vitro immune responsiveness to vaccinea virus and HLA. N Engl J Med 297:692.

    Article  PubMed  Google Scholar 

  48. Christiansen FT, Hawkins BR, Dawkins RL. 1978. Immune function in ankylosing spondylitics and their relatives: influence of disease and HLA B27. Clin Exp Immunol 33:270.

    PubMed  CAS  Google Scholar 

  49. Scharp DW, Swanson CJ, Olack BJ, et al 1994. Protection of encapsulated human islets implanted without immunosuppression in patients with type I or type II diabetes and in nondiabetic control subjects. Diabetes 43:1167–1170.

    Article  PubMed  CAS  Google Scholar 

  50. Sagen J. 1996. Chromaffin cell transplantation. In: 1996/97 Yearbook of Cell and Tissue Transplantation (Lanza RP, Chick WL, eds) Dordrecht, The Netherlands: Kluwer Academic Press.

    Google Scholar 

  51. Aebischer P, Buchser E, Joseph JM, et al 1994. Transplantation in humans of encapsulated xenogeneic cells without immunosuppression. Transplantation 58:1275–7.

    Article  PubMed  CAS  Google Scholar 

  52. Ezzell C. 1995. Tissue engineering and the human body shop: encapsulated-cell transplants enter the clinic. J NIH Research 7:47–51.

    Google Scholar 

  53. Sendtner M, Schmalbruch H, Stockli KA, et al 1992. Ciliary neurotrophic factor prevents degeneration of motor neurons in mouse mutant neuropathy. Nature 358:502–4.

    Article  PubMed  CAS  Google Scholar 

  54. Sagot Y, Tan SA, Baetge E, et al 1995. Polymer encapsulated cell lines genetically engineered to release ciliary neurotrophic factor can slow down progressive motor neuropathy in the mouse. Eur J Neurosci 7:1313–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lanza, R.P. (1999). Diffusion Chambers. In: Kühtreiber, W.M., Lanza, R.P., Chick, W.L. (eds) Cell Encapsulation Technology and Therapeutics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1586-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1586-8_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7205-2

  • Online ISBN: 978-1-4612-1586-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics