Multiphase Media

  • Sergey P. Kiselev
  • Evgenii V. Vorozhtsov
  • Vasily M. Fomin
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

The fundamentals of the mechanics of multiphase media are presented here for the first time within the framework of a course in fluid mechanics. This new branch of mechanics has appeared comparatively recently, about 40 years ago, in connection with the development of aerospace technology, nuclear power, and new technologies. At present, the general principles of the construction of the models of the mechanics of multiphase media have been formulated, and there are numerous applications. While presenting the material, we have aimed on the one hand to familiarize the reader with the mathematical models, which are applied for the description of various multiphase media, and on the other hand, to give an insight into the specific physical phenomena occurring in these media. Since the mechanics of multiphase media now enjoy a rapid development, the material of the present chapter does not have such a full-blown character as in the foregoing chapters. It will enable the reader to rapidly enter the details and become familiar with problems in the field of the mechanics of multiphase media.

Keywords

Permeability Entropy Vortex Surfactant Dust 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rakhmatulin, Kh.A., The fundamentals of gas dynamics of interpenetrating motions of compressible mediaPrikladnaya Matematika i Mekhanika(in Russian), 20(2):184, 1956.Google Scholar
  2. 2.
    Kraiko, A.N., Nigmatulin, R.I., Starkov, V.K., and Sternin, L.E., Mechanics of multiphase mediaItogi nauki i tehniki. Ser. Gidromekhanika(in Russian), Vol. 6, Nauka, Moscow, 1972.Google Scholar
  3. 3.
    Nigmatulin, R.I.The Fundamentals of the Mechanics of Heterogeneous Media(in Russian), Nauka, Moscow, 1978.Google Scholar
  4. 4.
    Nigmatulin, R.I.The Dynamics of the Multiphase Media(in Russian), Part 1, Nauka, Moscow, 1987.Google Scholar
  5. 5.
    Nigmatulin, R.I.The Dynamics of the Multiphase Media(in Russian), Part 2, Nauka, Moscow, 1987.Google Scholar
  6. 6.
    Nikolaevskii, V.N. et al.The Mechanics of Saturated Porous Media(in Russian), Nedra, Moscow, 1970.Google Scholar
  7. 7.
    Yanenko, N.N., Soloukhin, R.I., Papyrin, A.N., and Fomin, V.M.Supersonic Two-Phase Flows under the Conditions of Velocity Nonequilibrium of Particles(in Russian), Nauka, Novosibirsk, 1980.Google Scholar
  8. 8.
    Kiselev, S.P., Ruev, G.A., Trunev, A.P., Fomin, V.M., and Shavaliev, M.Sh.Shockwave Processes in Two- Component and Two-Phase Media(in Russian), Nauka, Novosibirsk, 1992.Google Scholar
  9. 9.
    Panton, P.,Flow properties from the continuum viewpoint of a nonequilibrium gas-particle mixtureJ. Fluid Mechanics31(2):273, 1968.MATHCrossRefGoogle Scholar
  10. 10.
    Henderson, C.B.,Drag coefficient of spheres in continuum and rarefied flowsAIAA J.14(6):707, 1967.CrossRefGoogle Scholar
  11. 11.
    Carlson, D.I. and Hogland, R.F., Particle drag and heat transfer in rocket nozzlesAIAA J.2(11):1980, 1964.Google Scholar
  12. 12.
    Boiko, V.M. et al., Shock wave interaction with a cloud of particlesShock Waves7:275, 1997.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kraiko, A.N. and Sternin, L.E., Theory of flows of a two velocity continuous medium containing solid or liquid particlesPrikladnaya Matematika i Mekhanika(in Russian), 29(3):418, 1965. (English transl. in: J. Appl. Math. Mechanics (PMM), 29(3):482, 1965).Google Scholar
  14. 14.
    Klebonov, L.A., Kroshilin, A.E., Nigmatulin, B.I., and Nigmatulin, R.I., On the hyperbolicity, stability and correctness of the Cauchy problem for the system of equations of two-velocity motion of two-phase mediaPrikladnaya Matematika i Mekhanika(in Russian), 46(1):83, 1982.Google Scholar
  15. 15.
    Kraiko, A.N., On the correctness of the Cauchy problem for a two-liquid flow model of a gas-particle mixturePrikladnaya Matematika i Mekhanika(in Russian), 46(3):420, 1982. MathSciNetGoogle Scholar
  16. 16.
    Kliegel, J.R. and Nickerson, G.R., Flow of gas-particle mixtures in axially symmetric nozzles, inDetonation and Two-Phase Flow. Progress in Astronautics and RocketryVol. 6/Eds. S.S. Penner and F.A. Williams, Academic Press, New York, 1962, p.173.Google Scholar
  17. 17.
    Kiselev, S.P. and Fomin, V.M.,A continual/discrete model for the gas-particle mixture at a small volume concentration of particlesZhurnal Prikladnoi Mekhaniki i Tehnicheskoi Fiziki(in Russian), 2:93, 1986.Google Scholar
  18. 18.
    Lavrentyev, M.M., Romanov, V.G., and Shishatskii, S.P.Ill-Posed Problems of the Mathematical Physics and Analysis(in Russian), Nauka, Moscow, 1980. Google Scholar
  19. 19.
    Myasnikov, V.P., On the dynamic motion equations of two-component systemsZhurnal Prikladnoi Mekhaniki i Tehnicheskoi Fiziki(in Russian), 2, 58, 1967. Google Scholar
  20. 20.
    Goldshtik, M.A. and Kozlov, B.M.,The elementary theory of the condensed disperse systemsZhurnal Prikladnoi Mekhaniki i Tehnicheskoi Fiziki(in Russian), 4:89, 1973.Google Scholar
  21. 21.
    Bird G.A.Molecular Gas DynamicsClarendon Press, Oxford, 1976.Google Scholar
  22. 22.
    Volkov, A. and Tsirkunov, Yu., Direct simulation Monte Carlo modelling of two-phase gas-solid particle flows with inelastic particle-particle collisions, inProc. 3rd ECCOMAS Computational Fluid Dynamics Conf. 9–13 September 1996,Paris FranceJohn Wiley and Sons, Inc., New York, 1996, p. 662.Google Scholar
  23. 23.
    Kiselev, S.P. and Fomin, V.M.,The relations at a combined discontinuity in gas with solid particlesZhurnal Prikladnoi Mekhaniki i Tehnicheskoi Fiziki(in Russian), 2:112, 1984.Google Scholar
  24. 24.
    Sternin, L.E.The Fundamentals of the Gas Dynamics of Two-Phase Nozzle Flows(in Russian), Mashinostroenie, Moscow, 1974.Google Scholar
  25. 25.
    Kliegel, J.R.,Gas particle nozzle flowsNinth Symposium (International) on CombustionAcademic Press, New York, 1963, p. 811.Google Scholar
  26. 26.
    Kogan, M.N.Rarefied Gas Dynamics(in Russian), Nauka, Moscow, 1967.Google Scholar
  27. 27.
    Zeldovich, Ya.B. and Myshkis, A.D.The Elements of the Mathematical Physics(in Russian), Nauka, Moscow, 1973.Google Scholar
  28. 28.
    Zeldovich, Ya.B.Selected Works. Particles Kernels the Universe (in Russian), Nauka, Moscow, 1985.Google Scholar
  29. 29.
    Arnold, V.I.Catastrophe Theory(in Russian), Nauka, Moscow, 1990.Google Scholar
  30. 30.
    Kiselev, S.P. and Kiselev, V.P., On the interaction of a shock wave with a cloud of particles with perturbed boundariesZhurnal Prikladnoi Mekhaniki i Tehnicheskoi Fiziki(in Russian), 37(4):36, 1996.Google Scholar
  31. 31.
    Kuhl, A.L., Reichenbach, H., and Ferguson, R.E., Shock interaction with a dense-gas wall layer. In:Shock Waves Proc.Vol. 1 /Ed. K. Takayama, Sendai, Japan, 1991.Google Scholar
  32. 32.
    Boiko, V.M.The Investigation of the Dynamics of Acceleration Breakdown and Ignition of Particles Behind the Shock Waves by the Methods of Laser Visualizationa summary of Thesis (in Russian), Novosibirsk, 1984.Google Scholar
  33. 33.
    Kiselev, S.P. and Kiselev, V.P., On the ignition of coal dust particles in shock wavesPrikladnaya Mekhanika i Tehnicheskaya Fizika(in Russian), 36(3):31, 1995.MATHGoogle Scholar
  34. 34.
    Kiselev, S.P. and Kiselev, V.P., On some peculiarities of gas flow arising as a result of the shock wave interaction with a cloud of particlesPrikladnaya Mekhanika i Tehnicheskaya Fizika(in Russian), 36(2), 8, 1995.MathSciNetMATHGoogle Scholar
  35. 35.
    Fomin, V.M. et al.,On some peculiarities of gas flow arising at the shock wave interaction with a cloud of particlesDoklady Rossiiskoi Akademii Nauk(in Russian), 340(2):8, 1995.Google Scholar
  36. 36.
    Landau, L.D. and Lifschitz, E.M.Hydrodynamics(in Russian), Nauka, Moscow, 1986.Google Scholar
  37. 37.
    Landau, L.D. and Lifschitz, E.M.Statistical Physics(in Russian), Part 1, Nauka, Moscow, 1976.Google Scholar
  38. 38.
    Larson, R.G. and Hirasaki, G.J., Analysis of the physical mechanisms in surfactant floodingSoc. Petroleum Eng. J.18(1):42, 1978.Google Scholar
  39. 39.
    Larson, R.G., Davis, H.T., and Scriven, L.E.,Displacement of residual nonwetting fluid from porous mediaChem. Eng. Sci.18:75, 1980.Google Scholar
  40. 40.
    Davis, S.A. and Jones, S.C.,Displacement mechanism of mi-cellar solutionJ. Petroleum Technol.20:1415, 1968.Google Scholar
  41. 41.
    Chernyi, I.A.Soil Hydrogasdynamics(in Russian), Gostoptehizdat, Moscow, 1963.Google Scholar
  42. 42.
    Barenblatt, G.I., Entov, V.M., and Ryzhik, V.M.The Motion of Liquids and Gases in Natural Seams(in Russian), Nedra, Moscow, 1984.Google Scholar
  43. 43.
    Kiselev, S.P.Continuum Mechanics(in Russian), Novosibirsk State Technical University, Novosibirsk, 1997.Google Scholar
  44. 44.
    Nakoryakov, V.E., Sobolev, V.V., and Schreiber, I.R., Long wavelength disturbances in a gas-liquid mixtureIzvestiya AN SSSR Mekhanika Zhidkosti i Gaza (in Russian), 5:71, 1972.Google Scholar
  45. 45.
    Wijngaarden, L. van, One-dimensional flow of liquids containing small gas bubblesAnnu. Rev. Fluid MechanicsVol. 4:369, 1972.CrossRefGoogle Scholar
  46. 46.
    Kutateladze, S.S. and Nakoryakov, V.E.Heat and Mass Transfer and the Waves in Gas-Liquid Systems(in Russian), Nauka, Novosibirsk, 1984.Google Scholar
  47. 47.
    Karpman, V.I.Nonlinear Waves in Disperse Media(in Russian), Nauka, Moscow, 1973. Google Scholar
  48. 48.
    Zakharov, V.E. et al.The Theory of Solitons(in Russian), Nauka, Moscow, 1980MATHGoogle Scholar
  49. 49.
    Zabusky, N.J., and Kruskal, M.D., Interaction of “solitons” in a collisionless plasma and the recurrence of initial statesPhys. Rev. Lett.15:240, 1965. MATHCrossRefGoogle Scholar
  50. 50.
    Sagdeev, R.Z.,On nonlinear motions of rarefied plasma in the magnetic field, inPhysics of Plasma and the Problem of Controlled Thermonuclear Reactions(in Russian), Vol. 4,USSR Academy of Sciences, Novosibirsk, 1958, p. 384.Google Scholar
  51. 51.
    Nigmatulin, R.I., Ivandaev, A. I., Nigmatulin, B. I.,and Milashenko, V.I., Nonstationary wave processes in the gas/vapor/liquid mixtures, inNonlinear Wave Processes in Two-Phase Media(in Russian), Institute of Thermophysics of the USSR Academy of Sciences, Novosibirsk, 1977, p. 80.Google Scholar
  52. 52.
    Berezin, Y.A.Modeling of Nonlinear Wave Processes(in Russian), Nauka, Novosibirsk, 1982. Google Scholar
  53. 53.
    Richtmyer, R.D. and Morton,K.W.Difference Methods for Initial-Value ProblemsSecond Edition, Interscience Publishers, New York, 1967.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Sergey P. Kiselev
    • 1
  • Evgenii V. Vorozhtsov
    • 1
  • Vasily M. Fomin
    • 1
  1. 1.Institute of Theoretical and Applied MechanicsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations