Skip to main content

Compact Object Reconstruction

  • Chapter

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

In this chapter we first present a review of the methods for the tomographie reconstruction of a compact homogeneous object that lies in a homogeneous background. Then we focus on contour estimation and polyhedral shape reconstructions. We give some sufficient conditions to obain exact reconstructions from a complete set of projections in the 2.1) case and present some extensions to the 3D case. Finally, due to the inherent diiculties of the exact reconstruction methods and their inappropriateness for practical situations,we propose an approximate reconstruction method that can handle the situation of very limited-angle projections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. T. Herman, H. K. Tuy, K. J. Langenberg, and P. C. Sabatier, Basic Methods of Tomography and Inverse Problems (Adam Hilger, Bristol, UK) 1987.

    Google Scholar 

  2. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York), 1987.

    Google Scholar 

  3. K. D. Sauer and C. A. Bouman, “Bayesian estimation of transmission tomograms using segmentation based optimization,” IEEE Transactions on Nuclear Sciences 39, 1144–1152 (1992).

    Article  CAS  Google Scholar 

  4. K. D. Sauer and C. A. Bouman, “A local update strategy for iterative reconstruction from projections,” IEEE Transactions on Signal Processing SP-41, 534–548 (1993).

    Article  Google Scholar 

  5. R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: A level-set approach,” IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-17, 158–175 (1995).

    Article  Google Scholar 

  6. D. J. Rossi and A. S. Willsky, “Reconstruction from projections based on detection and estimation of objects,” IEEE Transactions on Acoustics Speech and Signal Processing ASSP-32, 886–906 (1984).

    Article  Google Scholar 

  7. G. Demoment, “Image reconstruction and restoration: Overview of common estimation structure and problems,” IEEE Transactions on Acoustics Speech and Signal Processing ASSP-37, 2024–2036 (1989).

    Article  Google Scholar 

  8. S. Geman and D. McClure, “Statistical methods for tomographie image reconstruction,” In Proceedings of the 46th Session of the ISI, Bulletin of the ISI, volume 52, pp. 5–21, 1987.

    Google Scholar 

  9. L. Bedini, I. Gerace, and A. Tonazzini, “A deterministic algorithm for reconstructing images with interacting discontinuities,” Computer Vision and Graphics and Image Processing 56, 109–123 (1994).

    Google Scholar 

  10. C. A. Bouman and K. D. Sauer, “A generalized Gaussian image model for edge-preserving MAP estimation,” IEEE Transactions on Image Processing IP-2, 296–310 (1993).

    Article  CAS  Google Scholar 

  11. A. Mohammad-Djafari and J. Idier, “A scale invariant Bayesian method to solve linear inverse problems,” In G. Heidbreder, Maximum Entropy and Bayesian Methods (Kluwer Academic Publishers, Dordrecht), pp. 121–134, 1996.

    Chapter  Google Scholar 

  12. M. Nikolova, J. Idier, and A. Mohammad-Djafari, “Inversion of large-support ill-posed linear operators using a piecewise Gaussian MRF,” IEEE Transactions on Image Processing 7, 571–585 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations,” Journal of Computational Physics 79, 12–49 (1988).

    Article  Google Scholar 

  14. F. Catte, P. Lions, J. Morel, and T. Coll, “Image selective smoothing and edge detection by nonlinear diffusion,” SIAM Journal of Numerical Analysis 29, 182–193 (1992).

    Article  Google Scholar 

  15. R. T. Chin and K. F. Lai, “Deformable contours: Modeling and extraction,” IEEE Transactions on Pattern Analysis and Machine Intel-ligence PAMI-16, 601–608 (1994).

    Google Scholar 

  16. M. Kass, A. P. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” International Journal of Computer Vision 1, 321–331 (1988).

    Article  Google Scholar 

  17. L. H. Staib and J. S. Duncan, “Parametrically deformable contour models,” Computer Vision and Pattern Recognition, 98–103 (1989).

    Google Scholar 

  18. F. Santosa, “A level-set approach for inverse problems involving obstacles,” Control, Optimisation and Calculus of Variations 1, 17–33 (1996).

    Article  Google Scholar 

  19. Y. Amit, U. Grenander, and M. Piccioni, “Structural image restoration through deformable templates,” Journal of Acoustical Society America 86, 376–387 (1991).

    Google Scholar 

  20. K. M. Hanson, G. S. Cunningham, and R. J. McKee, “Uncertainty assessment for reconstructions based on deformable models,” International Journal of Imaging Systems and Technology 8, 506–512 (1997).

    Article  Google Scholar 

  21. D. Kolzow, A. Kuba, and A. Volcic, “An algorithm for reconstructing convex bodies from their projections,” Discrete and Computational Geometry 4, 205–237 (1989).

    Article  Google Scholar 

  22. J. L. Prince and A. S. Willsky, “Reconstructing convex sets from support line measurements,” IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 377–389 (1990).

    Article  Google Scholar 

  23. J. L. Prince and A. S. Willsky, “Convex set reconstruction using prior shape information,” Computer Vision and Graphics and Image Processing 53, 413–427 (1991).

    Google Scholar 

  24. P. Milanfar, W. C. Karl, and A. S. Willsky, “A moment-based variational approach to tomographie reconstruction,” IEEE Transactions on Image Processing 25, 772–781 (1994).

    Google Scholar 

  25. P. Milanfar, W. C. Karl, and A. S. Willsky, “Reconstructing binary polygonal objects from projections: A statistical view,” Computer Vision and Graphics and Image Processing 56, 371–391 (1994).

    Google Scholar 

  26. P. Milanfar, G. C. Verghese, W. C. Karl, and A. S. Willsky, “Reconstructing polygons from moments with connections to array processing,” IEEE Transactions on Signal Processing 43, 432–443 (1995).

    Article  Google Scholar 

  27. P. J. Davis, “Triangle formulas in the complex plane,” Mathematics of Computation 18, 569–577 (1964).

    Article  Google Scholar 

  28. P. J. Davis, “Plane regions determined by complex moments,” Journal of Approximation Theory 19, 148–153 (1977).

    Article  Google Scholar 

  29. C. Soussen and A. Mohammad-Djafari, “A 3D polyhedral shape recon-struction from tomographic projection data,” Technical Report, GPI-LSS, Gif-sur-Yvette, France (1998).

    Google Scholar 

  30. B. Mirtich, “Fast and accurate computation of polyhedral mass properties,” Journal of Graphic Tools 1, 31–50 (1996).

    Article  Google Scholar 

  31. A. Mohammad-Djafari, “Shape reconstruction in X-ray tomography,” In Proc. of SPIE 97, volume 3170, (SPIE, Bellingham, WA), pp. 240–251, 1997.

    Article  Google Scholar 

  32. A. Mohammad-Djafari, K. D. Sauer, Y. Khayi, and E. Cano, “Reconstruction of the shape of a compact object from a few number of projections,” In IEEE Int. Conf. on Image Processing (ICIP), volume 1,(IEEE, Piscataway, NJ), pp. 165–169, 1997.

    Article  Google Scholar 

  33. G. Winkler, Image Analysis, Random Fields and Dynamic Monte Carlo Methods (Springer Verlag, Berlin), 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohammad-Djafari, A., Soussen, C. (1999). Compact Object Reconstruction. In: Herman, G.T., Kuba, A. (eds) Discrete Tomography. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1568-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1568-4_14

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7196-3

  • Online ISBN: 978-1-4612-1568-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics