Skip to main content

Distributed Octree Data Structures and Local Refinement Method for the Parallel Solution of Three-Dimensional Conservation Laws

  • Chapter
Grid Generation and Adaptive Algorithms

Abstract

Conservation laws are solved by a local Galerkin finite element procedure with adaptive space-time mesh refinement and explicit time integration. A distributed octree structure representing a spatial decomposition of the domain is used for mesh generation, and later may be used to correct for processor load imbalances introduced at adaptive enrichment steps. A Courant stability condition is used to select smaller time steps on smaller elements of the mesh, thereby greatly increasing efficiency relative to methods having a single global time step. To accommodate the variable time steps, octree partitioning is extended to use weights derived from element size. Computational results are presented for the three-dimensional Euler equations of compressible flow solved on an IBM SP2 computer. The problem examined is the flow inside a perforated shock tube.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Adjerid, J.E. Flaherty, P. Moore, and Y. Wang. High-order adaptive methods for parabolic systems. Physica-D, 60: 94–111, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  2. P.L. Baehmann, S.L. Wittchen, M.S. Shephard, K.R. Grice, and M.A. Yerry. Robust, geometrically based, automatic two-dimensional mesh generation. Int. J. Numer. Meth. Engng., 24: 1043–1078, 1987.

    Article  MATH  Google Scholar 

  3. M.W. Beall and M.S. Shephard. A general topology-based mesh data structure. Int. J. Numer. Meth. Engng., 40(9): 1573–1596, 1997.

    Article  MathSciNet  Google Scholar 

  4. M.J. Berger. On conservation at grid interfaces. SI AM J. Numer. Anal, 24(5):967–984, 1987.

    Article  MATH  Google Scholar 

  5. M.J. Berger and S.H. Bokhari. A partitioning strategy for nonuniform problems on multiprocessors. IEEE Trans. Computers, 36(5): 570–580, 1987.

    Article  Google Scholar 

  6. M.J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys., 53: 484–512, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  7. K.S. Bey, A. Patra, and J.T. Oden. hp-version discontinuous Galerkin methods for hyperbolic conservation laws: a parallel adaptive strategy. Int. J. Numer. Meth. Engng., 38(22): 3889–3907, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Biswas, K.D. Devine, and J.E. Flaherty. Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math., 14: 255–283, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  9. C.L. Bottasso, H.L. de Cougny, M. Dindar, J.E. Flaherty, C. Özturan, Z. Rusak, and M.S. Shephard. Compressible aerodynamics using a parallel adaptive time-discontinuous Galerkin least-squares finite element method. In Proc. 12th AIAA Appl. Aero. Conf., number 94-1888, Colorado Springs, 1994.

    Google Scholar 

  10. B. Cockburn and P.-A. Gremaud. Error estimates for finite element methods for scalar conservation laws. SIAM J. Numer. Anal, 33: 522–554, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Cockburn, S.-Y. Lin, and C.-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One-Dimensional systems. J. Comput. Phys., 84: 90–113, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Cockburn and C.-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math. Comp., 52: 411–435, 1989.

    MathSciNet  MATH  Google Scholar 

  13. G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. Parallel and Dist. Comput, 7: 279–301, 1989.

    Article  Google Scholar 

  14. H.L. de Cougny, K.D. Devine, J.E. Flaherty, R.M. Loy, C. Ozturan, and M.S. Shephard. Load balancing for the parallel adaptive solution of partial differential equations. Appl. Numer. Math., 16: 157–182, 1994.

    Article  MathSciNet  Google Scholar 

  15. H.L. de Cougny, M.S. Shephard, and C. Özturan. Parallel three-dimensional mesh generation. Comp. Sys. Engng., 5: 311–323, 1994.

    Article  Google Scholar 

  16. H.L. de Cougny, M.S. Shephard, and C. Özturan. Parallel three-dimensional mesh generation on distributed memory MIMD computers. Engng. with Computers, 12(2): 94–106, 1996.

    Article  Google Scholar 

  17. K.D. Devine and J.E. Flaherty. Parallel adaptive hp-refinement techniques for conservation laws. Appl. Numer. Math., 20: 367–386, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  18. K.D. Devine, J.E. Flaherty, R. Loy, and S. Wheat. Parallel partitioning strategies for the adaptive solution of conservation laws. In, I. Babuška, J.E. Flaherty, W.D. Henshaw, J.E. Hopcroft, J.E. Oliger, and T. Tezduyar, editors, Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations, volume 75, pages 215–242, Berlin-Heidelberg, 1995. Springer-Verlag.

    Google Scholar 

  19. R.E. Dillon Jr. A parametric study of perforated muzzle brakes. ARDC Tech. Report ARLCB-TR-84015, Benét Weapons Laboratory, Watervliet, 1984.

    Google Scholar 

  20. C. Farhat and M. Lesoinne. Automatic partitioning of unstructured meshes for the parallel solution of problems in computational mechanics. Int. J. Numer. Meth. Engng., 36: 745–764, 1993.

    Article  MATH  Google Scholar 

  21. J.E. Flaherty, M. Dindar, R.M. Loy, M.S. Shephard, B.K. Szymanski, J.D. Teresco, and L.H. Ziantz. An adaptive and parallel framework for partial differential equations. Numerical Analysis 1997 (Proc. 17th Dundee Biennial Conf.). In, D.F. Griffiths and D.J. Higham and G.A. Watson, editors, Pitman Research Notes in Mathematics Series, volume 380, pages 74–90, Addison Wesley Longman, 19

    Google Scholar 

  22. J.E. Flaherty, R.M. Loy, C. Özturan, M.S. Shephard, B.K. Szymanski, J.D. Teresco, and L.H. Ziantz. Parallel structures and dynamic load balancing for adaptive finite element computation. Appl. Numer. Math., 26: 241–263, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  23. J.E. Flaherty, R.M. Loy, P.C. Scully, M.S. Shephard, B.K. Szymanski, J.D. Teresco, and L.H. Ziantz. Load balancing and communication optimization for parallel adaptive finite element computation. Proc. XVII Int. Conf. Chilean Comp. Sci. Soc, 246–255, IEEE, Los Alamitos, CA, 1997.

    Chapter  Google Scholar 

  24. J.E. Flaherty, R.M. Loy, M.S. Shephard, B.K. Szymanski, J.D. Teresco, and L.H. Ziantz. Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws. IMA Preprint Series 1483, Institute for Mathematics and its Applications, University of Minnesota, 1997. To appear, J. Parallel and Dist. Comput.

    Google Scholar 

  25. J.E. Flaherty, R.M. Loy, M.S. Shephard, B.K. Szymanski, J.D. Teresco, and L.H. Ziantz. Predictive load balancing for parallel adaptive finite element computation. In H.R. Arabnia, editor, Proc. PDPTA ′97, volume I, 460–469, 1997.

    Google Scholar 

  26. P.L. George. Automatic Mesh Generation. John Wiley and Sons, Ltd., Chichester, 1991.

    MATH  Google Scholar 

  27. G. Karypis and V. Kumar. Metis: Unstructured graph partitioning and sparse matrix ordering system. Tech. Report, University of Minnesota, Department of Computer Science, Minneapolis, MN, 1995.

    Google Scholar 

  28. A. Kela. Hierarchical octree approximations for boundary representation-based geometric models. Computer Aided Design, 21: 355–362, 1989.

    Article  Google Scholar 

  29. W.L. Kleb and J.T. Batina. Temporal adaptive Euler/Navier-Stokes algorithm involving unstructured dynamic meshes. AIAA J., 30(8): 1980–1985, 1992.

    Article  MATH  Google Scholar 

  30. E. Leiss and H. Reddy. Distributed load balancing: design and performance analysis. W. M. Kuck Research Computation Laboratory, 5: 205–270, 1989.

    Google Scholar 

  31. R.A. Ludwig, J.E. Flaherty, F. Guerinoni, P.L. Baehmann, and M.S. Shephard. Adaptive solutions of the Euler equations using finite quadtree and octree grids. Computers and Structures, 30: 327–336, 1988.

    Article  MATH  Google Scholar 

  32. H.T. Nagamatsu, K.Y. Choi, R.E. Duffy, and G.C. Carofano. An experimental and numerical study of the flow through a vent hole in a perforated muzzle brake. ARDEC Tech. Report ARCCB-TR-87016, Benet Weapons Laboratory, Watervliet, 1987.

    Google Scholar 

  33. L. Oliker and R. Biswas. Efficient load balancing and data remapping for adaptive grid calculations. In Proc. 9th ACM Symposium on Parallel Algorithms and Architectures (SPAA), 33–42, Newport, 1997.

    Google Scholar 

  34. L. Oliker, R. Biswas, and R.C. Strawn. Parallel implementation of an adaptive scheme for 3D unstructured grids on the SP2. In Proc. 3rd International Workshop on Parallel Algorithms for Irregularly Structured Problems, Santa Barbara, 1996.

    Google Scholar 

  35. S. Osher and S. Chakravarthy. Upwind schemes and boundary conditions with applications to the euler equations in general coordinates. J. Comput. Phys., 50, 1983.

    Google Scholar 

  36. A. Patra and J.T. Oden. Problem decomposition for adaptive hp finite element methods. Comp. Sys. Engng., 6(2): 97, 1995.

    Article  Google Scholar 

  37. R. Perucchio, M. Saxena, and A. Kela. Automatic mesh generation from solid modelsbased on recursive spatial decompositions. Int. J. Numer. Meth. Engng., 28: 2469–2501, 1989.

    Article  MATH  Google Scholar 

  38. A. Pothen, H. Simon, and K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Mat. Anal Appl, 11(3): 430–452, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  39. P.L. Roe. Approximate riemann solvers, parametric vectors and difference schemes. J. Comput. Phys., 43, 1981.

    Google Scholar 

  40. P.L. Roe. Characteristic based schemes for the euler equations. Annual Review of Fluid Mechanics, 18, 1986.

    Google Scholar 

  41. K. Schloegel, G. Karypis, and V. Kumar. Parallel multilevel diffusion algorithms for repartitioning of adaptive meshes. Tech. Report 97-014, University of Minnesota, Department of Computer Science and Army HPC Center, Minneapolis, MN, 1997.

    Google Scholar 

  42. W.J. Schroeder and M.S. Shephard. Geometry-based fully automatic mesh generati on and the delaunay triangulation. Int. J. Numer. Meth. Engng., 26: 2503–2515, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  43. M.S. Shephard. Approaches to the automatic generation and control of finite element meshes. Applied Mechanics Review, 41(4): 169–185, 1988.

    Article  Google Scholar 

  44. M.S. Shephard. Update to: Approaches to the automatic generation and control of finite element meshes. Applied Mechanics Reviews, 49(10, part 2): S5–S14, 1996.

    Article  Google Scholar 

  45. M.S. Shephard, J.E. Flaherty, H.L. de Cougny, C. Özturan, C.L. Bottasso, and M.W. Beall. Parallel automated adaptive procedures for unstructured meshes. In Parallel Comput. in CFD, number R-807, pages 6.1–6.49. Agard, Neuilly-Sur-Seine, 1995.

    Google Scholar 

  46. M.S. Shephard and M.K. Georges. Automatic three-dimensional mesh generation by the Finite Octree technique. Int. J. Numer. Meth. Engng., 32(4): 709–749, 1991.

    Article  MATH  Google Scholar 

  47. C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys., 27: 1–31, 1978.

    Article  Google Scholar 

  48. M.L. Simone, M.S. Shephard, J.E. Flaherty, and R.M. Loy. A distributed octree and neighbor-finding algorithms for parallel mesh generation. Tech. Report 23-1996, Rensselaer Polytechnic Institute, Scientific Computation Research Center, Troy, 1996.

    Google Scholar 

  49. P.K. Sweby. High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal, 21: 995–1011, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  50. B. Van Leer. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys., 23: 276–299, 1977.

    Article  MATH  Google Scholar 

  51. B. Van Leer. Flux vector splitting for the Euler equations. ICASE Report 82-30, ICASE, NASA Langley Research Center, Hampton, 1982.

    Google Scholar 

  52. V. Vidwans, Y. Kallinderis, and V. Venkatakrishnan. Parallel dynamic load-balancing algorithm for three-dimensional adaptive unstructured grids. AIAA J., 32(3): 497–505, 1994.

    Article  MATH  Google Scholar 

  53. C.H. Walshaw, M. Cross, and M. Everett. Mesh partitioning and load-balancing for distributed memory parallel systems. In Proc. Par. Dist. Comput. for Comput. Mech., Lochinver, Scotland, 1997.

    Google Scholar 

  54. S. Wheat, K. Devine, and A. MacCabe. Experience with automatic, dynamic load balancing and adaptive finite element computation. In H. El-Rewini and B. Shriver, editors, Proc. 27th Hawaii International Conference on System Sciences, 463–472, Kihei, 1994.

    Google Scholar 

  55. M.A. Yerry and M.S. Shephard. Automatic three-dimensional mesh generation by the modified octree technique. Int. J. Numer. Meth. Engng., 20: 1965–1990,1984.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Flaherty, J.E. et al. (1999). Distributed Octree Data Structures and Local Refinement Method for the Parallel Solution of Three-Dimensional Conservation Laws. In: Bern, M.W., Flaherty, J.E., Luskin, M. (eds) Grid Generation and Adaptive Algorithms. The IMA Volumes in Mathematics and its Applications, vol 113. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1556-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1556-1_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7191-8

  • Online ISBN: 978-1-4612-1556-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics