Skip to main content

Image Reconstruction from Experimental Data in Diffusion Tomography

  • Chapter
Computational Radiology and Imaging

Abstract

The authors have recently introduced a novel imaging algorithm for optical/diffusion tomography, the “Elliptic Systems Method” (ESM). In this article the performance of the ESM is analyzed for experimental data. Images are obtained for the case of a single source and seven (7) detector locations, an unusually limited number of source/detector pairs. These images are verified by numerical simulation. A new approach to data fitting (at the detectors) is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arridge and M. Schweiger, 1995, Sensitivity to prior knowledge in optical tomographic reconstruction,Proc. of SPIE, 2389,378–388 (SPIE - The Society of Photo-Optical Instrumentation Engineers).

    Article  Google Scholar 

  2. R. Barbour, H. Grader, J. Chang, S. Barbour, S. Koo, and R. Aronson, 1995, MRI-guided optical tomography, IEEE Comp. Sci. Eng., 2,#4, 63–77.

    Article  Google Scholar 

  3. W. Cai, B. Das, F. Liu, M. Zevallos, M. Lax, and R. Alfano, 1997, Time-resolved optical diffusion tomographic image reconstruction in highly scattering turbid media,Proc. Natl. Acad. Sci. USA, 93,13561–13564.

    Article  Google Scholar 

  4. K. Case and P. Zweifel, 1967, Linear Transport Theory,Addison-Wiley Publishing Company, London.

    MATH  Google Scholar 

  5. S. Colak, D. Papaioannou, G. Hooft, M. Van den Mark, H. Schomberg, J. Paasschens, J. Melissen, and N. Van Asten, 1997, Tomographie image reconstruction from optical projections in light-diffusing media,Applied Optics, 36,180–213.

    Article  Google Scholar 

  6. M. Klibanov and F. Santosa, 1991, Computational quasi-reversibility method for Cauchy problems for Laplace’s equation,SIAM J. Appl. Math., 51,1655–1675.

    Article  MathSciNet  Google Scholar 

  7. M. Klibanov and Rakesh, 1992, Numerical solution of a time-like Cauchy problem for the wave equation,Math. Methods in Appl. Sci., 15,559–580.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Klibanov, T. Lucas, and R. Frank, 1997, A fast and accurate imaging algorithm in optical/diffusion tomography, Inverse Problems, 13,1341–1361.

    Article  MathSciNet  MATH  Google Scholar 

  9. O. Ladyzenskaya, V. Solonnikov, and N. Uralceva, 1968, Linear and Quasi-linear Equations of Parabolic Type, AMS, Providence, RI.

    Google Scholar 

  10. M. Lavrentiev, V. Romanov, and S. Shishatskii, 1986, Ill-Posed Problems Of Mathematical Physics And Analysis,AMS, Providence, RI.

    Google Scholar 

  11. R. Lattes and J.-L. Lions, 1969, Method of Quasi-Reversibility: Applications To Partial Differential Equations, Elsevier, New York.

    MATH  Google Scholar 

  12. Mathematics and Physics of Emerging Biomedical Imaging,1996, National Research Council, Institute of Medicine, National Academic Press, Washington, D.C.

    Google Scholar 

  13. M. O’Leary, D. Boas, B. Chance, and A. Yodh, 1994, Images of inhomogeneous turbid media using diffuse photon density waves, in Optical Society of America Proc. “Advances In Optical Imaging And Photon Migration,” 21, 106–115.

    Google Scholar 

  14. V. Romanov, 1987, Inverse Problems of Mathematical Physics,VNU Press, Uthrecht.

    Google Scholar 

  15. L. Souriau, B. DuchÊne, D. Lesselier, and R. Kleinman, 1996, Modified gradient approach to inverse scattering for binary objects in stratified media,Inverse Problems, 12,463–481.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Wolbrast, 1993, Physics of Radiology,Appleton & Lange, Norwalk, CT.

    Google Scholar 

  17. V. Yakhno, 1990, Inverse Problems for Differential Equations of Elasticity, Novosibirsk, Nauka (in Russian).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klibanov, M.V., Lucas, T.R., Frank, R.M. (1999). Image Reconstruction from Experimental Data in Diffusion Tomography. In: Börgers, C., Natterer, F. (eds) Computational Radiology and Imaging. The IMA Volumes in Mathematics and its Applications, vol 110. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1550-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1550-9_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7189-5

  • Online ISBN: 978-1-4612-1550-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics