The Painlevé Approach to Nonlinear Ordinary Differential Equations

  • Robert Conte
Chapter
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

The “Painlevé analysis” is quite often perceived as a collection of tricks reserved to experts. The aim of this chapter is to demonstrate the contrary and to unveil the simplicity and the beauty of a subject that is, in fact, the theory of the (explicit) integration of nonlinear differential equations.

To achieve our goal, we will not start the exposition with a more or less precise “Painlevé test.” On the contrary, we will finish with it, after a gradual introduction to the rich world of singularities of nonlinear differential equations, so as to remove any cooking recipe.

The emphasis is put on embedding each method of the test into the well-known theorem of perturbations of Poincaré. A summary can be found at the beginning of each section.

Keywords

Manifold Soliton Expense Eter Lution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge Univ. Press, Cambridge, 1991).MATHGoogle Scholar
  2. [2]
    M.J. Ablowitz and H. Segur, Exact linearization of a Painlevé transcendent, Phys. Rev. Lett. 38 (1977), 1103–1106.MathSciNetADSGoogle Scholar
  3. [3]
    M.J. Ablowitz, A. Ramani, and H. Segur, Nonlinear evolution equations and ordinary differential equations of Painlevé type, Lett. Nuovo Cimento 23 (1978), 333–338.MathSciNetGoogle Scholar
  4. [4]
    M.J. Ablowitz, A. Ramani, and H. Segur, A connection between nonlinear evolution equations and ordinary differential equations of P-type. I, J. Math. Phys. 21 (1980), 715–721; II, 21 (1980), 1006–1015.MathSciNetADSMATHGoogle Scholar
  5. [5]
    M. Abramowitz and I.A. Stegun (eds.), Handbook of Mathematical Functions, tenth printing (National Bureau of Standards, Washington, 1972).MATHGoogle Scholar
  6. [6]
    G.G. Appelrot, The problem of motion of a rigid body about a fixed point, Uchebnye zapiski Moskovskogo universiteta, Otdel fizichesko-matematicheskikh nauk 11 (1894).Google Scholar
  7. [7]
    A. Beauville, Monodromie des systèmes différentiels linéaires à pôles simples sur la sphère de Riemann, Séminaire Bourbaki, 45mathrme année, 1992–93, exposé 765, Astérisque 216 (1993), 103–119.MathSciNetGoogle Scholar
  8. [8]
    V.A. Belinskii, G.W. Gibbons, D.N. Page, and C.N. Pope, Asymptotically Euclidean Bianchi IX metrics in quantum gravity, Phys. Lett. A 76 (1978), 433–435.MathSciNetGoogle Scholar
  9. [9]
    D. Benest and C. Prœschlé (eds.), Introduction to methods of complex analysis and geometry for classical mechanics and nonlinear waves (Éditions Frontières, Gif-sur-Yvette, 1994). R. Conte, Singularities of differential equations and integrability, pages 49–143. M. Musette, Nonlinear partial differential equations, pages 145–195.Google Scholar
  10. [10]
    D. Bessis, An introduction to Kowalevski’s exponents, Partially Integrable Evolution Equations in Physics, eds. R. Conte and N. Boccara (Kluwer, Dordrecht, 1990), pages 299–320.Google Scholar
  11. [11]
    T. Bountis, A. Ramani, B. Grammaticos, and B. Dorizzi, On the complete and partial integrability of non-Hamiltonian systems, Physica A 128 (1984), 268–288.MathSciNetADSGoogle Scholar
  12. [12]
    N. Bourbaki, Éléments de mathématique, I Théorie des ensembles, Fascicule de résultats (Hermann, Paris, 1958).MATHGoogle Scholar
  13. [13]
    F.J. Bureau, Sur la recherche des équations différentielles du second ordre dont l’intégrale générale est à points critiques fixes, Bulletin de la Classe des Sciences XXV (1939), 51–68.Google Scholar
  14. [14]
    F.J. Bureau, Differential equations with fixed critical points, Annali di Mat. pura ed applicata LXIV (1964), 229–364 [abbreviated as M. I].MathSciNetGoogle Scholar
  15. [15]
    F.J. Bureau, Differential equations with fixed critical points, Annali di Mat. pura ed applicata LXVI (1964), 1–116 [abbreviated as M. II].MathSciNetGoogle Scholar
  16. [16]
    F.J. Bureau, Équations différentielles du second ordre en Y et du second degré en Y dont l’intégrale générale est à points critiques fixes, Annali di Mat. pura ed applicata XCI (1972), 163–281 [abbreviated as M. III].MathSciNetGoogle Scholar
  17. [17]
    F.J. Bureau, Integration of some nonlinear systems of ordinary differential equations, Annali di Mat. pura ed applicata XCIV (1972), 345–360.MathSciNetGoogle Scholar
  18. [18]
    F.J. Bureau, Sur des systèmes différentiels du troisième ordre et les équations différentielles associées, Bulletin de la Classe des Sciences LXXIII (1987), 335–353.MathSciNetGoogle Scholar
  19. [19]
    F.J. Bureau, Differential equations with fixed critical points, Painlevé transcendents, their asymptotics and physical applications, 103–123, eds. D. Levi and P. Winternitz (Plenum, New York, 1992).Google Scholar
  20. [20]
    F.J. Bureau, (third order), in preparation.Google Scholar
  21. [21]
    É. Cartan, Sur les variétés à connexion projective, Bull. Soc. Math. France 52 (1924), 205–241.MathSciNetMATHGoogle Scholar
  22. [22]
    J. Chazy, Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, thesis, Paris (1910); Acta Math. 34 (1911), 317–385. Table des matières commentée avec index, R. Conte (1991), 6 pages.MathSciNetMATHGoogle Scholar
  23. [23]
    J. Chazy, Sur la limitation du degré des coëfficients des équations différentielles algébriques à points critiques fixes, C. R. Acad. Sc. Paris 155 (1912), 132–135.MATHGoogle Scholar
  24. [24]
    J. Chazy, Sur la limitation du degré des coëfficients des équations différentielles algébriques à points critiques fixes, Acta Math. 41 (1918), 29–69.MathSciNetGoogle Scholar
  25. [25]
    P.A. Clarkson, The Painlevé property and a partial differential equation with an essential singularity, Phys. Lett. A 109 (1985), 205–208.ADSGoogle Scholar
  26. [26]
    P.A. Clarkson, References for the Painlevé equations, about 21 pages.Google Scholar
  27. [27]
    R. Conte, Painlevé analysis of nonlinear PDE and related topics: a computer algebra program, preprint (1988), 1–7. Same title, Computer algebra and differential equations, ed. E. Tournier (Academic Press, New York, 1989), page 219.Google Scholar
  28. [28]
    R. Conte, Universal invariance properties of Painlevé analysis and Bäcklund transformation in nonlinear partial differential equations, Phys. Lett. A 134 (1988), 100–104.MathSciNetADSGoogle Scholar
  29. [29]
    R. Conte, Invariant Painlevé analysis of partial differential equations, Phys. Lett. A 140 (1989), 383–390.MathSciNetADSGoogle Scholar
  30. [30]
    R. Conte, Unification of PDE and ODE versions of Painlevé analysis into a single invariant version, Painlevé transcendents, their asymptotics and physical applications, eds. D. Levi and P. Winternitz (Plenum, New York, 1992), pages 125–144.Google Scholar
  31. [31]
    R. Conte, A.P. Fordy, and A. Pickering, A perturbative Painlevé approach to nonlinear differential equations, Physica D 69 (1993), 33–58.MathSciNetADSMATHGoogle Scholar
  32. [32]
    R. Conte and M. Musette, A simple method to obtain first integrals of dynamical systems, Solitons and chaos (Research Reports in Physics-Nonlinear Dynamics) eds. I.A. Antoniou and F.J. Lambert (Springer, Berlin, 1991), pages 125–128.Google Scholar
  33. [33]
    R. Conte and M. Musette Link between solitary waves and projective Riccati equations, J. Phys. A 25 (1992), 5609–5623.MathSciNetADSMATHGoogle Scholar
  34. [34]
    R. Conte and M. Musette, Linearity inside nonlinearity: exact solutions to the complex Ginzburg-Landau equation, Physica D 69 (1993), 1–17.MathSciNetADSMATHGoogle Scholar
  35. [35]
    R. Conte and M. Musette, A new method to test discrete Painlevé equations, Phys. Lett. A 223 (1996), 439–448.MathSciNetADSMATHGoogle Scholar
  36. [36]
    G. Contopoulos, B. Grammaticos, and A. Ramani, Painlevé analysis for the mixmaster universe model, J. Phys. A 25 (1993), 5795–5799.MathSciNetADSGoogle Scholar
  37. [37]
    G. Contopoulos, B. Grammaticos, and A. Ramani, The mixmaster universe model, revisited, J. Phys. A 27 (1994), 5357–5361.MathSciNetADSMATHGoogle Scholar
  38. [38]
    C.M. Cosgrove, Painlevé classification of all semilinear partial differential equations of the second order I. Hyperbolic equations in two independent variables, Stud. Appl. Math. 89 (1993), 1–61.MathSciNetMATHGoogle Scholar
  39. [39]
    C.M. Cosgrove, Painlevé classification of all semilinear partial differential equations of the second order II.Parabolic and higher dimensional equations, Stud. Appl. Math. 89 (1993), 95–151.MathSciNetMATHGoogle Scholar
  40. [40]
    C.M. Cosgrove, All binomial-type Painlevé equations of the second order and degree three or higher, Stud. Appl. Math. 90 (1993), 119–187.MathSciNetMATHGoogle Scholar
  41. [41]
    C.M. Cosgrove, Painlevé classification problems featuring essential singularities, Stud. Appl. Math. 98 (1997), 355–433.MathSciNetGoogle Scholar
  42. [42]
    C.M. Cosgrove, Corrections and annotations to E.L. Ince, Ordinary differential equations, Chapter 14, on the classification of Painleve differential equations, unpublished (1993).Google Scholar
  43. [43]
    C.M. Cosgrove and G. Scoufis, Painlevé classification of a class of differential equations of the second order and second degree, Stud. Appl. Math. 88 (1993), 25–87.MathSciNetMATHGoogle Scholar
  44. [44]
    G. Darboux, Sur la théorie des coordonnées curvilignes et des systèmes orthogonaux, Annales scientifiques de l’École normale supérieure 7 (1878), 101–150.MathSciNetGoogle Scholar
  45. [45]
    G. Darboux, Sur les équations aux dérivées partielles, C. R. Acad. Sc. Paris 96 (1883), 766–769.Google Scholar
  46. [46]
    H.T. Davis, Introduction to nonlinear differential and integral equations, no. O-556037 (U.S.Government Printing Office, Washington D.C., 1961).Google Scholar
  47. [47]
    J.-M. Drouffe, Simplex AMP reference manual, version 1.0 (SPhT, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, 1996).Google Scholar
  48. [48]
    V.S. Dryuma, Projective duality in the theory of second order differential equations, Mat. Issled., Kishinev 112 (1990), 93–103.MathSciNetMATHGoogle Scholar
  49. [49]
    V.P. Ermakov, Équations différentielles du deuxième ordre. Conditions d’intégrabilité sous forme finale. Univ. Izv. Kiev (1880), Ser. 3, No. 9, 1–25. [English translation by A.O. Harin, 29 pages].Google Scholar
  50. [50]
    A.P. Fordy, The Hénon-Heiles system revisited, Physica D 52 (1991), 204–210.MathSciNetADSMATHGoogle Scholar
  51. [51]
    A.P. Fordy and J. Gibbons, Some remarkable nonlinear transformations, Phys. Lett. A 75 (1980), 325–325.MathSciNetADSGoogle Scholar
  52. [52]
    A.P. Fordy and A. Pickering, Analysing negative resonances in the Painlevé test, Phys. Lett. A 160 (1991), 347–354.MathSciNetADSGoogle Scholar
  53. [53]
    R. Fuchs, Sur quelques équations différentielles linéaires du second ordre, C. R. Acad. Sc. Paris 145 (1905), 555–558.Google Scholar
  54. [54]
    B. Gambier, Sur les équations différentielles dont l’intégrale générale est uniforme, C. R. Acad. Sc. Paris 142 (1906), 266–269, 1403-1406, 1497-1500.MATHGoogle Scholar
  55. [55]
    B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes, C. R. Acad. Sc. Paris 143 (1906), 741–743; 144 (1907), 827-830, 962-964.Google Scholar
  56. [56]
    B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes, thesis, Paris (1909); Acta Math. 33 (1910), 1–55.MathSciNetGoogle Scholar
  57. [57]
    C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095–1097.ADSMATHGoogle Scholar
  58. [58]
    R. Gamier, Sur des équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, thesis, Paris (1911); Annales scientifiques de l’École normale supérieure 29 (1912), 1–126.Google Scholar
  59. [59]
    R. Gamier, Sur des systèmes différentiels du second ordre dont l’intégrale générale est uniforme, Annales scientifiques de l’École normale supérieure 77 (1960), 123–144.Google Scholar
  60. [60]
    V.V. Golubev, Lectures on the integration of the equation of motion of a rigid body about a fixed point (Gostechizdat (State publishing house), Moscow, 1953). English (Israel program for scientific translations, 1960).Google Scholar
  61. [61]
    B. Grammaticos, B. Dorizzi, and A. Ramani, Solvable integrodifferential equations and their relation to the Painlevé conjecture, Phys. Rev. Lett. 53 (1984), 1–4.MathSciNetADSGoogle Scholar
  62. [62]
    G.-H. Halphen, Sur un système d’équations différentielles, C. R. Acad. Sc. Paris 92 (1881), 1101–1103. Reprinted, Œuvres, volume 2, 475-477 (1918).Google Scholar
  63. [63]
    M. Hénon and C. Heiles, The applicability of the third integral of motion: some numerical experiments, Astron. J. 69 (1964), 73–79.ADSGoogle Scholar
  64. [64]
    E. Hille, Ordinary Differential Equations in the Complex Domain (J.Wiley and Sons, New York, 1976).MATHGoogle Scholar
  65. [65]
    P. Hoyer, Über die Integration eines Differentialgleichungssystems von der Form dx 1/dt = a 1 x 2 x 3 + a 2 x 3 x 1 + a 3 x 1 x 2, dx 2/dt = b 1 x 2 x 3+b 2 x 3 x 1+b 3 x 1 x 2, dx 3/dt = c 1 x 2 x 3 +c 2 x 3 x 1+c 3 x 1 x 2 durch elliptische Funktionen, Dissertation Königl. Friedrich-Wilhelms Univ., Berlin (1879), 1–36.Google Scholar
  66. [66]
    L. Hsu and N. Kamran, Classification of second-order ordinary differential equations admitting Lie groups of fiber-preserving point symmetries, Proc. London Math. Soc. 58 (1989), 387–416.MathSciNetMATHGoogle Scholar
  67. [67]
    E.L. Ince, Ordinary Differential Equations (Longmans, Green, and Co., London and New York, 1926). Reprinted (Dover, New York, 1956). See errata in [42].Google Scholar
  68. [68]
    C. Itzykson and J.-M. Drouffe, Statistical Field Theory, two volumes (Cambridge University Press, Cambridge, 1989).Google Scholar
  69. [69]
    M. Jimbo, M.D. Kruskal, and T. Miwa, Painlevé test for the self-dual Yang-Mills equation, Phys. Lett. A 92 (1982), 59–60.MathSciNetADSGoogle Scholar
  70. [70]
    M. Jimbo and T. Miwa, Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. II, Physiea D 2 (1981), 407–448.MathSciNetADSMATHGoogle Scholar
  71. [71]
    N. Joshi and M.D. Kruskal, A local asymptotic method of seeing the natural barrier of the solutions of the Chazy equation, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, ed. P.A. Clarkson (Plenum, New York, 1993), pages 331–340.Google Scholar
  72. [72]
    D.J. Kaup, On the inverse scattering problem for cubic eigenvalue problems of the class ψxxx + SQψx + 6Rψ = λψ, Stud. Appl. Math. 62 (1980), 189–216.MathSciNetMATHGoogle Scholar
  73. [73]
    S.V. Kovalevski, Sur le problème de la rotation d’un corps solide autour d’un point fixe, Acta Math. 12 (1889), 177–232.MathSciNetGoogle Scholar
  74. [74]
    S.V. Kovalevski, Sur une propriété du système d’équations différentielles qui définit la rotation d’un corps solide autour d’un point fixe, Acta Math. 14 (1890), 81–93.MathSciNetGoogle Scholar
  75. [75]
    M.D. Kruskal, Flexibility in applying the Painlevé test, Painlevé Transcendents, Their Asymptotics and Physical Applications, eds. D. Levi and P. Winternitz (Plenum, New York, 1992), pages 187–195.Google Scholar
  76. [76]
    M.D. Kruskal and P.A. Clarkson, The Painlevé-Kowalevski and poly-Painlevé tests for integrability, Stud. Appl. Math. 86 (1992), 87–165.MathSciNetMATHGoogle Scholar
  77. [77]
    M. Ku’s, Integrals of motion for the Lorenz system, J. Phys. A 16 (1983), L689–L691.MathSciNetADSGoogle Scholar
  78. [78]
    S. Labrunie and R. Conte, A geometrical method towards first integrals for dynamical systems, J. Math. Phys. 37 (1996), 6198–6206.MathSciNetADSMATHGoogle Scholar
  79. [79]
    L.D. Landau and E.M. Lifshitz, Théorie classique des champs, chapter Problèmes cosmologiques (Mir, Moscow, 1989, 4th edition).Google Scholar
  80. [80]
    A. Latifi, M. Musette, and R. Conte, The Bianchi IX (mixmaster) cosmological model is not integrable, Phys. Lett. A 194 (1994), 83–92; 197 (1995), 459-460.MathSciNetADSMATHGoogle Scholar
  81. [81]
    P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490.MathSciNetMATHGoogle Scholar
  82. [82]
    G. Levine and M. Tabor, Integrating the nonintegrable: analytic structure of the Lorenz system revisited, Physica D 33 (1988), 189–210.MathSciNetADSMATHGoogle Scholar
  83. [83]
    R. Liouville, Sur les invariants de certaines équations différentielles et sur leurs applications, Journal de l’École Polytechnique LIX (1889), 7–76.Google Scholar
  84. [84]
    G.M. Murphy, Ordinary Differential Equations and Their Solutions (Van Nostrand, Princeton, 1960).MATHGoogle Scholar
  85. [85]
    M. Musette, Chapter 8 of this volume.Google Scholar
  86. [86]
    M. Musette and R. Conte, Non-Fuchsian extension to the Painlevé test. Phys. Lett. A 206 (1995), 340–346.MathSciNetADSMATHGoogle Scholar
  87. [87]
    P.K. Nekrasov, The problem of motion of a rigid body about a fixed point, Matem. Sb. 16 (1892).Google Scholar
  88. [88]
    P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, Berlin, 1986).MATHGoogle Scholar
  89. [89]
    L.V. Ovsiannikov, Group Analysis of Differential Equations (Academic Press, New York, 1982).MATHGoogle Scholar
  90. [90]
    P. Painlevé, Leçons sur la théorie analytique des équations différentielles (Leçons de Stockholm, delivered in 1895) (Hermann, Paris, 1897). Reprinted, Œuvres de Paul Painlevé, vol. I (Éditions du CNRS, Paris, 1973).Google Scholar
  91. [91]
    P. Painlevé, Mémoire sur les équations différentielles dont l’intégrale générale est uniforme, Bull. Soc. Math. France 28 (1900), 201–261.MathSciNetMATHGoogle Scholar
  92. [92]
    P. Painlevé, Sur les équations différentielles d’ordre quelconque à points critiques fixes, C. R. Acad. Sc. Paris 130 (1900), 1112–1115.MATHGoogle Scholar
  93. [93]
    P. Painlevé, Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme, Acta Math. 25 (1902), 1–85.MathSciNetGoogle Scholar
  94. [94]
    P. Painlevé, Observations au sujet de la Communication précédente (de Arnaud Denjoy), C. R. Acad. Sc. Paris 148 (1902), 1156–1157.Google Scholar
  95. [95]
    P. Painlevé, Sur les équations différentielles du second ordre à points critiques fixes, C. R. Acad. Sc. Paris 143 (1906), 1111–1117.Google Scholar
  96. [96]
    Œuvres de Paul Painlevé, 3 volumes (Éditions du CNRS, Paris, 1973, 1974, 1976). Order to: La librairie de CNRS-Éditions, 151 bis, rue Saint-Jacques, F-75005 Paris, phone +33-1-53100505, fax+33-1–53100557, e-mail editions@edition.enrs.fr).Google Scholar
  97. [97]
    A. Pickering, Testing nonlinear evolution equations for complete in-tegrability, Ph.D. thesis, University of Leeds (1992).Google Scholar
  98. [98]
    E. Pinney, The nonlinear differential equation y″(x) + p(x)y(x) + c/y3(x) = 0, Proc. Amer. Math. Soc. 1 (1950), 681.MathSciNetMATHGoogle Scholar
  99. [99]
    H. Poincaré, Sur un théorème de M. Fuchs, Acta Math. 7 (1885), 1–32.MathSciNetMATHGoogle Scholar
  100. [100]
    H. Poincaré, Les méthodes nouvelles de la mécanique céleste, 3 volumes (Gauthier-Villars, Paris, 1892, 1893, 1899).Google Scholar
  101. [101]
    J.-F. Pommaret, Lie Pseudogroups and Mechanics (Gordon and Breach, New York, 1988).MATHGoogle Scholar
  102. [102]
    A. Ramani, B. Grammaticos, and T. Bountis, The Painlevé property and singularity analysis of integrable and nonintegrable systems, Physics Reports 180 (1989), 159–245.MathSciNetADSGoogle Scholar
  103. [103]
    K.A. Robbins, Periodic solutions and bifurcation structure at high R in the Lorenz model, SIAM J. Appl. Math. 36 (1979), 457–472.MathSciNetADSMATHGoogle Scholar
  104. [104]
    K. Sawada and T. Kotera, A method for finding N-soliton solutions of the KdV equation and KdV-like equation, Prog. Theor. Phys. 51 (1974), 1355–1367.MathSciNetADSMATHGoogle Scholar
  105. [105]
    F. Ayres Jr., Theory and Problems of Differential Equations (Mc-Graw Hill, New York, 1972).Google Scholar
  106. [106]
    L. Schlesingcr, Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten, J. für R. und Angew. Math. 141 (1912), 96–145.Google Scholar
  107. [107]
    H. Segur, Solitons and the inverse scattering transform, Topics in Ocean Physics, eds. A.R. Osborne and P. Malanotte Rizzoli (North-Holland Publ. Co., Amsterdam, 1982), pages 235–277.Google Scholar
  108. [108]
    T. Sen and M. Tabor, Lie symmetries of the Lorenz model, Physica D 44 (1990), 313–339.MathSciNetADSMATHGoogle Scholar
  109. [109]
    A.H. Taub, Empty space-times admitting a three-parameter group of motions, Annals of Math. 53 (1951), 472–490.MathSciNetADSMATHGoogle Scholar
  110. [110]
    A. Tresse, Détermination des invariants ponctuels de l’équation différentielle ordinaire du second ordre y″ = ω(x,y,y′). Leipzig 1896. 87 S. gr. 8°. Fürstl. Jablonowski’schen Gesellschaft zu Leipzig. Nr. 32 (13 der math.-naturw. Section). Mémoire couronné par l’Académie Jablonowski; S. Hirkel, Leipzig (1896).Google Scholar
  111. [111]
    H. Umemura, Birational automorphic groups and differential equations, Nagoya Math. J. 119 (1990), 1–80.MathSciNetMATHGoogle Scholar
  112. [112]
    G. Valiron, Cours d’analyse mathématique, (Masson, Paris, 1950, 2nd edition).Google Scholar
  113. [113]
    J. Weiss, M. Tabor, and G. Carnevale, The Painlevé property for partial differential equations, J. Math. Phys. 24 (1983), 522–526.MathSciNetADSMATHGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1999

Authors and Affiliations

  • Robert Conte

There are no affiliations available

Personalised recommendations