Skip to main content

Microinsemination Using Spermatogenic Cells in Mammals

  • Chapter
Male Sterility and Motility Disorders

Part of the book series: Serono Symposia USA ((SERONOSYMP))

  • 171 Accesses

Abstract

Microinsemination (MI), also called microassisted fertilization or microfertilization, has been used extensively in clinical practice and for research purposes. The first attempt to fertilize mammalian oocytes by MI was made by Uehara and Yanagimachi in 1976 (1). They demonstrated that injected sperm heads could develop into pronuclei after incorporation into homologous and heterologous oocytes. Since then MI with several mammalian species has increased our fundamental knowledge of fertilization. Full-term embryo development following in-tracytoplasmic sperm injection (ICSI) was first demonstrated in the rabbit (2), followed by bovines (3). Even though the efficiency of ICSI in these animal studies was disappointingly low, human ICSI proved to be very efficient and became the method of choice to overcome male factor infertility (4). The history and technical aspects of MI with mature spermatozoa have already been described elsewhere (5,6). Advancement of MI techniques has enabled us to use immature male germ cells (spermatogenic cells) as substitutes for spermatozoa. In contrast to the development of ICSI, the development of MI using spermatogenic cells was largely contributed by experiments with animals, especially mice. We will review the technical aspects of MI using spermatogenic cells and its significance for basic researches and clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Uehara T, Yanagimachi R. Microsurgical injection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei. Biol Reprod 1976;15:467–70.

    Article  PubMed  CAS  Google Scholar 

  2. Hosoi Y, Miyake M, Utsumi K, Iritani A. Development of rabbit oocytes after microinjection of spermatozoa. Proceedings of the 11th International Congress on Animal Reproduction 1988;3:abstract 331.

    Google Scholar 

  3. Goto K, Kinoshita A, Takuma Y, Ogawa K. Fertilisation of bovine oocytes by the injection of immobilized, killed spermatozoa. Vet Rec 1990;127:517–20.

    PubMed  CAS  Google Scholar 

  4. Palermo G, Joris H, Debroey P, Van Steirteghem AC. Pregnancies after intracyto-plasmic injection of single spermatozoon into an oocyte. Lancet 1992;340:17–18.

    Article  PubMed  CAS  Google Scholar 

  5. Fishel S. Histological overview of the use of micromanipulation. In: Fishel S, Symonds EM, editors. Gamete and embryo micromanipulation in human reproduction. London: Edward Arnold, 1993:3–17.

    Google Scholar 

  6. Iritani A. Micromanipulation of gametes for in vitro assisted fertilization. Mol Reprod Dev 1991;28:199–207.

    Article  PubMed  CAS  Google Scholar 

  7. Ogura A, Yanagimachi R. Round spermatid nuclei injected into hamster oocytes form pronuclei and participate in syngamy. Biol Reprod 1993;48:219–25.

    Article  PubMed  CAS  Google Scholar 

  8. Tajima Y, Onoue H, Kitamura Y, Nishimune Y. Biologically active kit ligand growth factor is produced by mouse Sertoli cells and is defective in Sld mutant mice. Development 1991;113:1031–35.

    PubMed  CAS  Google Scholar 

  9. Ogura A, Yanagimachi R, Usui N. Behavior of hamster and mouse round spermatid nuclei incorporated into mature oocytes by electro fusion. Zygote 1993;1:1–8.

    Article  PubMed  CAS  Google Scholar 

  10. Schatten G. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev Biol 1994;165:299–335.

    Article  PubMed  CAS  Google Scholar 

  11. Hewitson L, Haavisto A, Simerly C, Jones J, Schatten G. Microtubule organization and chromatin configuration in hamster oocytes during fertilization and par-thenogenetie activation, and after insemination with human sperm. Biol Reprod 1997;57:967–75.

    Article  PubMed  CAS  Google Scholar 

  12. Shin T-Y, Noguchi Y, Yamamoto Y, Mochida K, Ogura A. Microtubule organization in hamster oocytes after fertilization with mature spermatozoa and round sper-matids. J Reprod Dev 1998 (in press).

    Google Scholar 

  13. Kimura Y, Yanagimachi R. Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring. Development 1995;121:2397–405.

    PubMed  CAS  Google Scholar 

  14. Palermo GD, Colombero LT, Rosenwaks Z. The human sperm centrosome is responsible for normal syngamy and early embryonic development. Rev Reprod 1997;2:19–27.

    Article  PubMed  CAS  Google Scholar 

  15. Tesarik J, Mendoza C, Testart J. Viable embryos from injection of round spermatids into oocytes. N Engl J Med 1995;333:525.

    Article  PubMed  CAS  Google Scholar 

  16. Sousa M, Mendoza C, Barros A, Tesarik J. Calcium responses of human oocytes after intracytoplasmic injection of leukocytes, spermatocytes and round spermatids. Mol Hum Reprod 1996;2:853–57.

    Article  PubMed  CAS  Google Scholar 

  17. Ogura A, Matsuda J, Asano T, Yanagimachi R. Birth of pups after intra-ovarian bursal transfer of hamster zygotes. J Reprod Dev 1995;41:339–43.

    Article  Google Scholar 

  18. Ogura A, Matsuda J, Yanagimachi R. Birth of normal young following fertilization of mouse oocytes with round spermatids by electrofusion. Proc Natl Acad Sci USA 1994;91:7460–62.

    Article  PubMed  CAS  Google Scholar 

  19. Ogura A, Yanagimachi R. Spermatids as male gametes. Reprod Fertil Dev 1995;7:155–59.

    Article  PubMed  CAS  Google Scholar 

  20. Sofikitis NV, Miyagawa I, Agapitos E, et al. Reproductive capacity of the nucleus of the male gamete after completion of meiosis. J Assist Reprod Genet 1994;11:335–41.

    Article  PubMed  CAS  Google Scholar 

  21. Fishel S, Green S, Bishop M, et al. Pregnancy after intracytoplasmic injection of spermatid. Lancet 1997;345:1641–42.

    Article  Google Scholar 

  22. Kimura Y, Yanagimachi R. Intracytoplasmic sperm injection in the mouse. Biol Reprod 1995;52:709–20.

    Article  PubMed  CAS  Google Scholar 

  23. Ogura A, Yamamoto Y, Suzuki O, et al. In vitro fertilization and microinsemination with round spermatids for propagation of nephrotic genes in mice. Theriogenology 1996;45:1141–49.

    Article  PubMed  CAS  Google Scholar 

  24. Goto K, Kinoshita A, Nakanishi Y, Ogawa K. Blastocyst formation following intracytoplasmic injection of in-vitro derived spermatids into bovine oocytes. Hum Reprod 1996;11:824–29.

    Article  PubMed  CAS  Google Scholar 

  25. Nohara M, Hirayama T, Ogura A, Hiroi M, Araki Y. Development of a successful in vitro fertilization procedure and partial characterization of the gamete in the Mastomys (Praomys coucha): a new species for laboratory research in reproduc tive biology. Biol Reprod 1998;58:266.

    Article  Google Scholar 

  26. Ogura A, Matsuda J, Asano T, Suzuki O, Yanagimachi R. Mouse oocytes injected with cryopreserved round spermatids can develop into normal offspring. J Assist Reprod Genet 1996;13:431–34.

    Article  PubMed  CAS  Google Scholar 

  27. Tenemura K, Wakayama T, Kuramoto K, Hayashi Y, Sato E, Ogura A. Birth of normal young by microinsemination with frozen-thawed round spermatids collected from aged azoospermic mice. Lab Anim Sci 1997;47:203–4.

    Google Scholar 

  28. Ogura A, Matsuda J, Suzuki O, et al. Cryopreservation of mammalian spermatids. J Reprod Dev 1997;43:103.

    Article  Google Scholar 

  29. Antinori S, Versaci C, Dani G, Antinori M, Selman HA. Successful fertilization and pregnancy after injection of frozen-thawed round spermatids into human oocytes. Hum Reprod 1997;12:554–56.

    Article  PubMed  CAS  Google Scholar 

  30. Kimura Y, Yanagimachi R. Development of normal mice from oocytes injected with secondary spermatocyte nuclei. Biol Reprod 1995;53:855–62.

    Article  PubMed  CAS  Google Scholar 

  31. Ogura A, Wakayama T, Suzuki O, Shin T-Y, Matsuda J, Kobayashi Y. Chromosomes of mouse primary spermatocytes undergo meiotic divisions after incorporation into homologous immature oocytes. Zygote 1997;5:177–82.

    Article  PubMed  CAS  Google Scholar 

  32. Kerrebrock AW, Moore DP, Wu JS, Orr-Weaver TL. Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions. Cell 1995;83:247–56.

    Article  PubMed  CAS  Google Scholar 

  33. Martin-du Pan RC, Campana A. Physiology of spermatogenic arrest. Fertil Steril 1993;60:937–46.

    PubMed  CAS  Google Scholar 

  34. Rassoulzadegan M, Paquis-Flueklinger V, Bertino B, et al. Transmeiotic differentiation of male germ cells in culture. Cell 1993;75:997–1006.

    Article  PubMed  CAS  Google Scholar 

  35. Goto K, Okajima K, Ookutsu S, Nakanishi Y In vitro culture of bovine spermatocytes on murine testicular somatic cells. Theriogenology 1997;47:257.

    Article  Google Scholar 

  36. Weiss M, Vigier M, Hue D, et al. Pre-and postmeiotic expression of male germ cell-specific genes throughout 2-week cocultures of rat germinal and Sertoli cells. Biol Reprod 1997;57:68–76.

    Article  PubMed  CAS  Google Scholar 

  37. Palmiter RD, Brinster RL, Hammer RE, et al. Dramatic growth of the mice that develop from eggs microinjected with metallothionein growth hormone fusion genes. Nature 1982;300:611–15.

    Article  PubMed  CAS  Google Scholar 

  38. Tsukui T, Kanegae Y, Saito I, Toyoda Y. Transgenesis by adenovirus-mediated gene transfer into mouse zona-free eggs. Nature Biotech 1996;14:982–85.

    Article  CAS  Google Scholar 

  39. Capecchi MR. Altering the genome by homologous recombination. Science 1989;244:1288–92.

    Article  PubMed  CAS  Google Scholar 

  40. Blanchard KT, Boekelheide K. Adenovirus-mediated gene transfer to rat testis in vivo. Biol Reprod 1997;56:495–500.

    Article  PubMed  CAS  Google Scholar 

  41. Kim J-H, Jung-ha H-S, Lee H-T, Chung K-S. Development of a positive method for male sperm cell-mediated gene transfer in mouse and pig. Mol Reprod Dev 1997;46:515–26.

    Article  PubMed  CAS  Google Scholar 

  42. Lavitrano M, Camaioni A, Fazio VM, Dolci S, Farace MG, Spadafora C. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 1989;57:717–23.

    Article  PubMed  CAS  Google Scholar 

  43. Ogawa S, Hayashi K, Tada N, Sato M, Kurihara T, Iwaya M. Gene expression in blastocysts following direct injection of DNA into testis. J Reprod Dev 1995;41:379–82.

    Article  CAS  Google Scholar 

  44. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 1994;91:11298–302.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ogura, A., Yanagimachi, R. (1999). Microinsemination Using Spermatogenic Cells in Mammals. In: Hamamah, S., Olivennes, F., Mieusset, R., Frydman, R. (eds) Male Sterility and Motility Disorders. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1522-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1522-6_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7177-2

  • Online ISBN: 978-1-4612-1522-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics