The Collisionless Nature of High-Temperature Plasmas

  • T. M. O’Neil
  • F. V. Coroniti


An important property that distinguishes high temperature plasmas from normal fluids, even from conducting fluids such as liquid metals, is that the plasmas are to a first approximation collisionless. In a laboratory plasma, the mean-free-path between collisions can be much larger than the dimensions of the plasma. In space and astrophysical plasmas, the mean free path can easily exceed the dimensions of the structures of interest. The collisionless nature necessitates a kinetic treatment and introduces a variety of subtle new phenomena. For example, Landau damping (or growth) results from the resonant interaction of a wave with free streaming particles, a resonance that would be spoiled by collisions in a normal fluid. Also, the collisionless nature challenges us to find new descriptions for familiar phenomena. For example, what is the nature of a shock wave in a collisionless plasma?


Solar Wind Plasma Wave Langmuir Wave Collisionless Shock Slow Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adlam, J. H., and J. E. Allen, 1958, Philos. Mag. 3, 448.ADSMATHGoogle Scholar
  2. Axford, W. I., E. Leer, and G. Skadron, 1977, in Proceedings of the 15th International Conference on Cosmic Rays, Plovidiv, Bulgaria, Vol. 11, p. 132.Google Scholar
  3. Blandford, R. D. and J. P. Ostiker, 1978, Astrophys. J. 221, 129.CrossRefGoogle Scholar
  4. Brüning, O., T. Linnecar, F. Ruggio, W. Scandale, and E. Shaposhnikova, 1997, Nonlinear and Collective Phenomena in Beams Physics, edited by S. Chattopadhyay, M. Cornacchia, and C. Pellegrini (AIP, New York), p. 155.Google Scholar
  5. Chen, F. F., 1984, Introduction to Plasma Physics and Controlled Fusion, Second Ed. (Plenum Press, New York).Google Scholar
  6. Drummond, W. E., J. H. Malmberg, T. M. O’Neil, and J. R. Thompson, 1970, Phys. Fluids 13, 2422.ADSCrossRefGoogle Scholar
  7. Drummond, W. E., and D. Pines, 1962, Nucl. Fusion Suppl. 3, 1049.Google Scholar
  8. Everett, M., et al., 1994, Nature (London) 368, 527; see also Madena, A., et al., 1995, Nature (London) 377, 606.ADSCrossRefGoogle Scholar
  9. Feldman, W. C., S. J. Schwartz, S. J. Bame, D. N. Baker, J. Birn, J. T. Gosling, E. W. Hones, D. J. McComas, J. A. Slavin, E. J. Smith, and R. D. Zwickl, 1984, Geophys. Res. Lett. 11, 599.ADSCrossRefGoogle Scholar
  10. Fisch, N.J., 1984, Rev. Mod. Phys. 59, 175.ADSCrossRefGoogle Scholar
  11. Gould, R. W., T. M. O’Neil, and J. H. Malmberg, 1967, Phys. Rev. Lett. 19, 219.ADSCrossRefGoogle Scholar
  12. Hartmann, D. A., C. F. Driscoll, T. M. O’Neil, and V. Shapiro, 1995, Phys. Plasmas 2, 654.ADSCrossRefGoogle Scholar
  13. Kennel, C. F., et al., 1984, J. Geophys. Res. 89, 5419.ADSCrossRefGoogle Scholar
  14. Kennel, C. F., and R. Z. Sagdeev, 1967, J. Geophys. Res. 72, 3303.ADSCrossRefGoogle Scholar
  15. Krauss-Varban, D., and N. Omidi, 1993, Geophys. Res. Lett. 20, 1007.ADSCrossRefGoogle Scholar
  16. Krimskii, G. F., 1977, Dokl. Akad. Nauk SSSR 234, 1306.ADSGoogle Scholar
  17. Landau, L., 1946, J. Phys. (U.S.S.R.) 10, 45.Google Scholar
  18. Lee, M. A., 1983, J. Geophys. Res. 88, 6109.ADSCrossRefGoogle Scholar
  19. Leroy, M. M., D. Winske, C. C. Goodrich, C. S. Wu, and K. Papadopoulos, 1982, J. Geophys. Res. 87, 5081.ADSCrossRefGoogle Scholar
  20. Malmberg, J. H., and C. B. Wharton, 1966, Phys. Rev. Lett. 17, 175.ADSCrossRefGoogle Scholar
  21. Malmberg, J. H., and C. B. Wharton, 1967, Phys. Rev. Lett. 19, 775.ADSCrossRefGoogle Scholar
  22. Mazitov, R. K., 1965, Zh. Prikl. Mekhan. Tekh. Fiz. 1, 27.Google Scholar
  23. Ness, N. F., C. S. Scearce, and J. B. Seek, 1964, J. Geophys. Res. 69, 3531.ADSCrossRefGoogle Scholar
  24. O’Neil, T. M., 1965, Phys. Fluids 8, 2255.MathSciNetADSCrossRefGoogle Scholar
  25. Onishchenko, I. N., A. R. Lineskii, M. G. Matsiboroko, V. D. Shapiro, and V. I. Shevchenko, 1970, JETP Lett. 12, 218.Google Scholar
  26. Parker, E. N., 1961, J. Nucl. Energy, Part C 2, 146.ADSCrossRefGoogle Scholar
  27. Petschek, H. E., 1965, Plasma Physics (Intl. Atomic Energy Agency, Vienna), p. 567.Google Scholar
  28. Roberson, C., and K. W. Gentle, 1971, Phys. Fluids 14, 2462.ADSCrossRefGoogle Scholar
  29. Sagdeev, R. Z., 1966, Rev. Plasma Phys. 4, 23.ADSGoogle Scholar
  30. Spentzouris, L. K., J. F. Ostiguy, and P. L. Colestock, 1996, Phys. Rev. Lett. 76, 620.ADSCrossRefGoogle Scholar
  31. Stix, T., 1962, The Theory of Plasma Waves (McGraw-Hill, New York).MATHGoogle Scholar
  32. Stix, T., 1992, Waves in Plasmas (AIP, New York).Google Scholar
  33. Tajima, T., and J. M. Dawson, 1979, Phys. Rev. Lett. 43, 267.ADSCrossRefGoogle Scholar
  34. Tonks, L., and I. Langmuir, 1929, Phys. Rev. 33, 195.ADSMATHCrossRefGoogle Scholar
  35. Vedenov, A. A., E. P. Velikhov, and R. Z. Sagdeev, 1962, Nucl. Fusion Suppl. 2, 465.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • T. M. O’Neil
  • F. V. Coroniti

There are no affiliations available

Personalised recommendations