Advertisement

Air Pollution Effects on Growth of Ponderosa Pine, Jeffrey Pine, and Bigcone Douglas-Fir

  • M. J. Arbaugh
  • D. L. Peterson
  • P. R. Miller
Part of the Ecological Studies book series (ECOLSTUD, volume 134)

Abstract

Air pollution from the Los Angeles/Orange County Metropolitan area travels eastward, entering the San Bernardino Mountains along the southern and western edges of the range. This inflow pattern results in elevated ambient levels of pollutants in most forest areas below 2,600 m and a northeast-to-southwest gradient of increasing pollution across the mountain range (Bytnerowicz et al., this volume). The highest air pollution levels in the San Bernardinos are at the lower ecotone of mixed conifer forest. Below the mixed conifer forest, bigcone Douglas-fir (Pseudotsuga macrocarpa) grow in canyon areas dominated by chaparral shrubland. This area has slightly lower amounts of ozone air pollution but has larger amounts of nitrogenous pollution, higher air temperatures, and lower amounts of precipitation.

Keywords

Radial Growth Bark Beetle Slope Position Basal Area Increment Ozone Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkeley, R.J. Soil moisture use by mixed conifer forest in a summer-dry climate. Soil Sci. Soc. Am. J. 45: 423–427; 1981.CrossRefGoogle Scholar
  2. Biles, F.E. Estimates of two seasonal ozone indices across the San Bernardino Mountains using ordinary kriging. Master’s thesis, University of Georgia, Athens; 1995.Google Scholar
  3. Bolton, R.B.; Vogl, R.J. Ecological requirements of Pseudotsuga macrocarpa in the Santa Ana Mountains, California. J. Forest. 67: 112–116; 1969.Google Scholar
  4. Cook, E.R.; Peters, K. The smoothing spline: a new approach to standardizing forest interior tree-ring series. Tree-Ring Bull. 29:15; 1981.Google Scholar
  5. Cook, E.R.; Holmes, R.L. User’s manual for program ARSTAN. Tucson. AZ: Laboratory of Tree-Ring Research, University of Arizona; 1985.Google Scholar
  6. Craig, R.D. Lumbering in the San Bernardino Mountains. Typescript. San Bernardino, CA: San Bernardino National Forest, Supervisors Office; 1904.Google Scholar
  7. Dodge, M. Forest fuel accumulation—a growing problem. Science 177: 139–142; 1972.PubMedCrossRefGoogle Scholar
  8. Fenn, M.E.; Bytnerowicz, A. Dry deposition of nitrogen and sulfur to ponderosa and Jeffrey pine in the San Bernardino National Forest in southern California. Environ. Pollut. 81: 277–285 1993.PubMedCrossRefGoogle Scholar
  9. Fenn, M.E.; Dunn, RH.; Wilborn, R. Black stain root disease in ozone-stressed ponderosa pine. Plant Dis. 74: 426–430; 1990.CrossRefGoogle Scholar
  10. Fritts, H.C. Tree rings and climate. New York: Academic Press; 1976.Google Scholar
  11. Giorgi, F.; Brodeur, CS.; Bates, G.T. Regional climate change scenarios over the United States produced with a nested regional climate model. J. Clim. 7: 375–399; 1994.CrossRefGoogle Scholar
  12. Griffin, J.R.; Critchfield, W.E. The distribution of forest trees in California. Gen. tech. rep. PSW-82. Berkeley, CA: USDA, Forest Service, Pacific Southwest Station; 1972.Google Scholar
  13. Grulke, N.E.; Lee, E.H. Assessing visible ozone-induced foliar injury in ponderosa pine. Can. J. Forest Res. 27: 1658–1668; 1997.CrossRefGoogle Scholar
  14. Hall, R.C. Sanitation-salvage control bark beetles in southern California recreation area. J. Forest. 56: 9–11; 1957.Google Scholar
  15. Higashi, R.M.; Arbaugh, M.J.; Fan, T.W-M. Cumulative biochemical markers of air pollutant effects in natural-grown pines. In: Proceedings of critical methodologies for the study of ecosystem health, Davis, CA, September 10–11, 1996 (in press).Google Scholar
  16. Horton, J.S. Vegetation types of the San Bernardino Mountains. Forest Serv. tech. pap. 44. Berkeley, CA: USDA, Pacific Southwest Station; 1960.Google Scholar
  17. Knudsen, RH.; Lefohn, A.S. The use of geostatistics to characterize regional ozone exposures. In: Heck, W.W.; Taylor, O.C.; Tingey, D.T., eds. Assessment of crop loss from air pollution. London: Elsevier Applied Science; 1988: 91–105.CrossRefGoogle Scholar
  18. La Fuze, PB. Saga of the San Bernardino Mountains. Redlands, CA: San Bernardino Co. Museum Assoc; 1971.Google Scholar
  19. Lee, E.H.; Hogsett, W.E.; Tingey, D.T. Evaluation of ozone exposure indices in exposureresponse modeling. Environ. Pollut. 53: 43–62; 1988.PubMedCrossRefGoogle Scholar
  20. Lefohn, A.S.; Benedict, H.M. Exposure consideration associated with characterizing ozone ambient air quality monitoring data. In: Lee, S.D., ed. Evaluation of the scientific basis for ozone/oxidants standards. Pittsburgh, PA: Air Pollution Control Association; 1985: 17–31.Google Scholar
  21. Lefohn, A.S.; Knudsen, J.A.; Logan, J.A.; Simpson, J.; Bhumralkar, C. An evaluation of the kriging method to predict 7-h seasonal mean ozone concentrations for estimating crop losses. J. Air Pollut. Control Assoc. 37: 595–602; 1987a.Google Scholar
  22. Lefohn, A.S.; Laurence, J.A.; Kohut, R.J. A comparison of indices that describe the relationship between exposure to ozone and reduction in the yield of agricultural crops. Atmos. Environ. 22: 1242–1243; 1987b.Google Scholar
  23. Leiberg, J.B. San Gabriel, San Bernardino, and San Jacinto forest reserves. In: Gannett, H., ed. 20th Annu. Rep. U.S. Geological Survey to Sec. Agric. Part 5, Forest reserves. Washington, D.C.: Government Printing Office; 1900: 411–479.Google Scholar
  24. Manion, P.D. Tree disease concepts. Englewood Cliffs, NJ: Prentice-Hall; 1981.Google Scholar
  25. McBride, J.R.; Laven, R.D. Fire scars as an indicator of fire frequency in the San Bernardino Mountains, California. J. Forest. 74: 439–442; 1976.Google Scholar
  26. McDonald, P.M.; Littrel, E.E. The big-cone Douglas-fir-canyon live oak community in southern California. Madrona 23: 310–320; 1976.Google Scholar
  27. Miller, PR.; Elderman, M.H., eds. Photochemical oxidant air pollution effects on a mixed conifer forest ecosystem. EPA 600/3–77-104. Corvallis, OR: U.S. EPA; 1977.Google Scholar
  28. Miller, PR.; Parmeter, J.R.; Taylor, O.C.; Cardiff, E.A. Ozone injury to the foliage of Pinus ponderosa. Phytopathology 53: 1072–1076; 1963.Google Scholar
  29. Miller, PR.; Taylor, O.C.; Wilhour, R.G. Oxidant air pollution effects on a western coniferous forest ecosystem. Research brief EPA 600/D-82–276. Corvallis, OR: U.S. EPA; 1982.Google Scholar
  30. Miller, PR.; Longbotham, G.J.; Longbotham, C.R. Sensitivity of selected western conifers to ozone. Plant Dis. 67: 1113–1115; 1983.CrossRefGoogle Scholar
  31. Miller, RR.; McBride, J.R.; Schilling, S.L.; Gomez, A.P. Trend of ozone damage to conifer forests between 1974 and 1988 in the San Bernardino Mountains of southern California. In: Proceedings of air pollution effects on western forests, 32nd annual meeting of Air and Waste Management Association, Anaheim, CA. 1989: 309–323.Google Scholar
  32. Minnich, R.A. Pseudodotsuga macrocarpa in Baja California. Madrona 29: 22–31; 1982.Google Scholar
  33. Minnich, R.A. The biogeography of fire in the San Bernardino mountains of California—a historical study. Geography 28. Berkeley, CA: Univ. of California Press; 1988.Google Scholar
  34. Ohmart, C.P; Williams, C.B., Jr. The effects of photochemica oxidants on radial growth increment for five species of conifers on the San Bernardino National Forest. Plant Dis. 63: 1038–1042; 1979.Google Scholar
  35. Peterson, D.L.; Silsbee, D.G., Poth, M.A., Arbaugh, M.J., Biles, F.E. Growth response of bigcone Douglas-fir (Pseudotsuga macrocarpa) to long-term ozone exposure in southrn California. J. Air Waste Manage. Assoc. 45: 36–45; 1995.CrossRefGoogle Scholar
  36. Peterson, D.L.; Arbaugh, M.J. Mixed conifer forests of the Sierra Nevada. In: Olson, R.K.; Binkley, D.; BÖhm, M. eds. The response of western forests to air pollution. New York: Springer-Verlag; 1992: 433–459.Google Scholar
  37. Peterson, D.L.; Arbaugh, M.J.; Wakefield, V.A.; Miller, P.R. Evidence of growth reduction in ozone-stressed Jeffrey pine (Pinus Jeffrey Grev. and Balf.) in Sequoia and Kings Canyon national parks. J. Air Waste Manage. Assoc. 38: 906–912; 1987.Google Scholar
  38. Peterson, D.L.; Arbaugh, M.J.; Robinson, L.J. Regional growth changes in ozone-stressed ponderosa pine (Pinus ponderosa) in the Sierra Nevada, California, USA. Holocene 1: 50–61; 1992.Google Scholar
  39. Richards, B.L., Sr; Taylor, O.C.; Edmunds, G.F., Jr. Ozone needle mottle of pine in southern California. J. Air Waste Manage. Assoc. 18: 73–77; 1968.Google Scholar
  40. Rosecrans, W.S. Logging in recreational forests. Am. Forests 63: 20–22; 1958.Google Scholar
  41. Spurr, S.H.; Barnes, B.V. Forest ecology. New York: John Wiley & Sons; 1980.Google Scholar
  42. Stark, R.W.; Miller, RR.; Cobb, F.W., Jr.; Wood, D.L.; Parmeter, J.R., Jr. Photochemical oxidant injury and bark beetle (Coleoptera: Scolytidae) infestation of ponderosa pine. I. Incidence of beetle infestation in injured trees. Hilgardia 39: 121–126; 1968.Google Scholar
  43. Stokes, M.A.; Smiley, T.L. An introduction to tree-ring dating. Chicago: Univ. of Chicago Press; 1968.Google Scholar
  44. Taylor, O.C. Oxidant air pollutant effects on a western coniferous forest ecosystem. Task B report. Historical background and proposed systems study of the San Bernardino Mountain area. Riverside, CA: Statewide Air Pollution Research Center. University of California; 1973.Google Scholar
  45. Temple, P.J.; Miller, P.R. Seasonal influences of ozone uptake and foliar injury to ponderosa and Jeffrey pines at a southern California site. In: Bytnerowicz, A.; Arbaugh, M.J.; Schilling, S. tech. coords. Proceedings of the international symposium on air pollution and climate change effects on forest ecosystems, February 5–9. 1996, Riverside, CA, GO-164 (in press). Internet: http://www.rfl.psw.fs.fed.us/pubs/psw-gtr-164index.html Google Scholar
  46. Temple, P.J.; Reichers, G.H.; Miller, P.R. Foliar injury responses of ponderosa pine seedlings to ozone, wet and dry acidic deposition, and drought. Environ. Exp. Bot. 32: 101–113; 1992.CrossRefGoogle Scholar
  47. USDA Forest Service. Draft forest plan. San Bernardino, CA: USDA Forest Service. San Bernardino National Forest, Supervisor’s Office; 1986.Google Scholar
  48. Waring, R.H.; Thies, W.G.; Muscato, D. Stem growth per leaf unit area: a measure of tree vigor. Forest Sci. 26: 112–117; 1980.Google Scholar
  49. Waring, R.H.; Newman, K.; Bell, J. Efficiency of tree crowns and stemwood production at different leaf canopy densities. Forestry 54: 15–23; 1981.CrossRefGoogle Scholar
  50. Wilson, C.C.; Dell, J.D. The fuels buildup in American forests..1. Forest. 69:471 475; 1971.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • M. J. Arbaugh
  • D. L. Peterson
  • P. R. Miller

There are no affiliations available

Personalised recommendations