Skip to main content

Piezoelectricity and Pyroelectricity

  • Chapter
Book cover Electromechanical Sensors and Actuators

Part of the book series: Mechanical Engineering Series ((MES))

  • 717 Accesses

Abstract

In the previous chapters on transduction we have concentrated on those mechanisms which depend on changes in the energy stored in magnetic and electric fields. Virtually all of the constitutive relations linking mechanical and electrical or magnetic variables have been nonlinear (generally quadratic). In addition to these mechanisms there are linear transduction processes, some of which are capacitive and some of which are inductive. Of these processes, the most common and well studied is piezoelectricity, a phenomenon exhibited by some materials in which application of a strain causes the establishment of an electric field and vice versa. In this chapter we focus on piezoelectricity and piezoelectric transducers. The related phenomenon of pyroelectricity is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.-J. Curie and J. Curie, Crystal Physics Development by Pressure of Polar Electricity in Hemihedral Crystals with Inclined Faces (in French), Acad. Sci. (Paris) C. R. Hebd. Seances 91, 294 (1880). A translation appears in R. B. Lindsay (ed.), Acoustics: Historical and Philosophical Development (Dowden Hutchinson and Ross, Stroudsburg, PA, 1973).

    Google Scholar 

  2. P. Langevin, Improvements Relating to the Emission and Reception of Submarine Waves, British Patent No. 145,691, accepted July 28, 1921. Reprinted in I. D. Groves (ed.), Acoustic Transducers (Hutchinson Ross, Stroudburg, PA, 1981).

    Google Scholar 

  3. R. B. Gray, US Patent No. 2,486,560, issued Nov. 1, 1949.

    Google Scholar 

  4. B. Jaffe, US Patent No. 2,708,244, issued May 10, 1955.

    Google Scholar 

  5. H. Kawai, The Piezoelectricity of Poly(vinylidene Fluoride), Jpn. J. Appl. Phys. 8, 975 (1969).

    Article  ADS  Google Scholar 

  6. R. E. Newnham, D P. Skinner, and L. E. Cross, Connectivity and PiezoelectricPyroelectric Composites, Mat. Res. Bull. 13, 525 (1978).

    Article  Google Scholar 

  7. A. Halliyal, A. Safari, A. S. Bhalla, R. E. Newnham, and L. E. Cross, Grain-Oriented Glass-Ceramics for Piezoelectric Devices, J. Am. Cer. Soc. 67, 331 (1984).

    Article  Google Scholar 

  8. A. Safari, G. Sa-Gong, J. Giniewicz, and R. E. Newnham, Composite Piezoelectric Sensors, in C. A. Rosen, B. V. Hiremath, and R. E. Newnham, (eds.), Piezoelectricity (American Institute of Physics, New York, 1992).

    Google Scholar 

  9. Q. Y. Jiang and L. E. Cross, Effects of Porosity on Electric Fatigue Behavior in PLZT and PZT Ferroelectric Ceramics, J. Mat. Sci. 28, 4536 (1993).

    Article  ADS  Google Scholar 

  10. D. A. Berlincourt, D. R. Curran, and H. Jaffe, in W. P. Mason (ed.) Physical Acoustics, Principles and Methods, Vol. I, Part A (Academic Press, New York, 1964).

    Google Scholar 

  11. O. B. Wilson, An Introduction to the Theory and Design of Sonar Transducers (Deptartment of the Navy, Washington, DC, 1985).

    Google Scholar 

  12. M. Rossi, Acoustics and Electroacoustics, P. R. W. Roe (trans.), (Artech House, Norwood, MA, 1988).

    Google Scholar 

  13. W. A. Smith, The Key Design Principles for.Piezoelectric Ceramic/Polymer Composites, in Proc. Conf. on Recent Advances in Adaptive and Sensory Materials and Their Applications, Blacksburg, VA, April 1992.

    Google Scholar 

  14. Materials Systems Inc., 521 Great Road, Littleton, MA 01460, USA.

    Google Scholar 

  15. C. Z. Rosen, B. V. Hiremath, and R. E. Newnham (eds.), Piezoelectricity (American Institute of Physics, New York, 1992).

    Google Scholar 

  16. Burleigh Instruments Inc., 9 Burleigh Park, Fisher, New York 14453–0755, USA.

    Google Scholar 

  17. G. Binnig and H. Rohrer, The Scanning Tunneling Microscope, Scientific American, 50(August 1985).

    Google Scholar 

  18. W. G. Cady, Piezoelectricy (McGraw-Hill, 1946). Also available in Dover reprint (Dover, New York, 1964).

    Google Scholar 

  19. W. P. Mason, An Electromechanical Representation of a Piezoelectric Crystal Used as a Transducer, IRE Proc., 23, 1252 (1935). Reprinted in I. D. Groves (ed.), Acoustic Transducers (Hutchinson Ross, Stroudburg, PA, 1981).

    Article  Google Scholar 

  20. W. P. Mason, Electromechanical Transducers and Wave Filters, 2nd ed. (Van Nostrand, New York, 1948).

    Google Scholar 

  21. W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonics (Van Nostrand, New York, 1950).

    Google Scholar 

  22. I. J. Busch-Vishniac and H. M. Paynter, Bond Graph Models of Acoustical Transducers, J. Franklin Inst., 328, 663 (1991).

    Article  Google Scholar 

  23. W. Moon and I. J. Busch-Vishniac, A Finite-Element Equivalent Bond Graph Modeling Approach with Application to the Piezoelectric Thickness Vibrator, J. Acoust. Soc. Am., 93, 3496 (1993).

    Article  ADS  Google Scholar 

  24. W. Moon and I. J. Busch-Vishniac, Modeling of Piezoelectric Ceramic Vibrators Including Thermal Effects. Part I. Thermodynamic Property Considerations, J. Acoust. Soc. Am., 98, 403 (1995).

    Article  ADS  Google Scholar 

  25. W. Moon and I. J. Busch-Vishniac, Modeling of Piezoelectric Ceramic Vibrators Including Thermal Effects. Part II. Derivation of Partial Differential Equations, J. Acoust. Soc. Am., 98, 413 (1995).

    Article  ADS  Google Scholar 

  26. W. Moon and I. J. Busch-Vishniac, Modeling of Piezoelectric Ceramic Vibrators Including Thermal Effects. Part III. Bond Graph Model for One-Dimensional Heat Conduction, J. Acoust. Soc. Am., 101, 1398 (1997).

    Article  ADS  Google Scholar 

  27. W. Moon and I. J. Busch-Vishniac, Modeling of Piezoelectric Ceramic Vibrators Including Thermal Effects. Part IV. Development and Experimental Evaluation of a Bond Graph Model of the Thickness Vibrator, J. Acoust. Soc. Am., 101, 1408 (1997).

    Article  ADS  Google Scholar 

  28. Dytran Instruments Inc., 21592 Manilla Street, Chatsworth, CA 91311, USA.

    Google Scholar 

  29. Kistler Instrument Corporation, 75 John Glenn Drive, Amherst, NY 142282119, USA.

    Google Scholar 

  30. PCB Piezotronics, 3425 Walden Avenue, Depew, NY 14043–2495, USA.

    Google Scholar 

  31. R. J. Bobber, Underwater Electroacoustic Measurements (Peninsula, Los Altos, CA, 1988).

    Google Scholar 

  32. P. Dario, D. DeRossi, R. Bedini, R. Francesconi, and M. G. Trivella, PVF2 Catheter-Tip Transducers for Pressure, Sound and Flow Measurement, in P. M. Galletti, D. E. DeRossi, and A. S. DeReggi (eds.), Medical Applications of Piezoelectric Polymers (Gordon and Breach, NY, 1988).

    Google Scholar 

  33. K. Uchino Electrostrictive Actuators: Materials and Applications, in C. Z. Rosen, B. V. Hiremath, and R. Newnham (eds.), Piezoelectricity (AIP Press, New York, 1992).

    Google Scholar 

  34. M. R. Keeling, Ink Jet Printing, in C. Z. Rosen, B. V. Hiremath, and R. Newnham (eds.), Piezoelectricity (AIP Press, New York, 1992).

    Google Scholar 

  35. Vernitron, 1601 Precision Park Lane, San Diego, CA 92173, USA.

    Google Scholar 

  36. W. J. Toulis, Flexural-Extensional Electromechanical Transducer, US Patent 3,277,433, Oct. 4, 1966.

    Google Scholar 

  37. J. Leifer and I. J. Busch-Vishniac, An Ultrasonic Source Incorporating a Solid Webster Horn for Three-Dimensional Position Monitoring in Robotics, ASME Winter Annual Meeting, Dallas, Nov. 1990.

    Google Scholar 

  38. J. A. Allocca and A. Stuart, Transducers: Theory and Applications (Reston, VA, 1984).

    Google Scholar 

  39. S. D. Bennett and J. Chambers, Novel Variable-Focus Ultrasonic Transducer, Electron Lett., 13, 110 (1977).

    Article  Google Scholar 

  40. I. R. Sinclair, Sensors and Transducers, 2nd ed. (Newnes, Oxford, UK, 1992).

    Google Scholar 

  41. Motorola Inc., 1303 E. Algonquin Rd., Schaumburg, IL 60196, USA.

    Google Scholar 

  42. M. Royer, J. O. Holmen, M. A. Wurm, O. S. Aadland, and M. Glenn, ZnO on Si Integrated Acoustic Sensor, Sensors and Actuators, 4, 357 (1983).

    Article  Google Scholar 

  43. R. P. Reid, E. S. Kim, D. M. Hong, and R. S. Muller, Piezoelectric Microphone with On-Chip CMOS Circuits, J. MEMS, 2, 111 (1993).

    Article  Google Scholar 

  44. S. Shoji and M. Esashi, Microflow Devices and Systems, J. MEMS, 4, 157 (1994).

    Google Scholar 

  45. M. A. Marcus, Ferroelectric Polymers and Their Applications, Fifth International Meeting on Ferroelectricity, State College, PA, Aug. 17–21, 1981.

    Google Scholar 

  46. J. Fraden, AIP Handbook of Modern Sensors: Physics, Design and Applications (AIP Press, New York, 1993).

    Google Scholar 

  47. J. G. Bergman, G. R. Crane, A. A. Ballman, and H. M. O’Bryan, Jr., Pyroelectric Copying Process, Appl. Phys. Lett. 21, 497 (1972).

    Google Scholar 

  48. H. R. Gallantree and R. M. Quilliam, Polarized Poly(vinylidene Fluoride) Its Application to Pyroelectric and Piezoelectric Devices, Marconi Review, 189(fourth quarter, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Busch-Vishniac, I.J. (1999). Piezoelectricity and Pyroelectricity. In: Electromechanical Sensors and Actuators. Mechanical Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1434-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1434-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7142-0

  • Online ISBN: 978-1-4612-1434-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics