The Static Cylinder in General Relativity

  • W. B. Bonnor


For a certain range of a parameter m the Levi-Civita vacuum solution describes the exterior field of a massive static cylinder. When m = 0, the spacetime is flat, and when m is small and positive, the gravitational field can be reconciled with the corresponding Newtonian one. When m =1/4, the circular orbits of test particles become null, and for m > 1/4, all circular orbits are space like. Increasing m still further, one finds that when m = 1/2 spacetime again becomes flat. It was formerly thought that for m > 1/4 the Levi-Civita spacetime did not represent the field of a cylinder. Recently, however, it has been matched with interior cylindrical solutions throughout the range 0 ≤ m < 1/2. The strange behavior for 1/4 ≤ m ≤ 1/2 therefore requires explanation. In this paper I examine one of these interior solutions from this point of view. It seems that for 1/4 ≤ m < 1/2 the Levi-Civita solution does refer to a cylinder, but of increasing radius. As m approaches 1/2, the radius tends to infinity, suggesting that when m = 1/2, the bounding spatial surface is plane.


Gravitational Field Circular Orbit Test Particle Interior Solution Newtonian Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    da Silva, M. F. A., Herrera, L., Paiva, F. M. and Santos, N. O. 1995. Gen. Rel. Gray. 27 859.ADSMATHCrossRefGoogle Scholar
  2. [2]
    Gautreau, R. and Hoffman, R. B. 1969. Nuovo Cimento B61 411.MathSciNetADSGoogle Scholar
  3. [3]
    Bonnor, W. B. and Martins, M. A. P. 1991. Class. Quantum Gray. 8 727.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Lathrop, J. D. and Orsene, M. S. 1980. J. Math. Phys. 21 152.ADSCrossRefGoogle Scholar
  5. [5]
    Philbin, T. G. 1996. Class. Quantum Gray. 13 1217.MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    Bonnor, W. B. and Davidson, W. 1992. Class. Quantum Gray. 9 2065.MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    Haggag, S. and Desokey, F. 1996. Class. Quantum Gray. 13 3221.MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    Darmois, G. 1927. Mémorial des Sciences Mathematiques (Gautiers Villars, Paris) Fasc. 25.Google Scholar
  9. [9]
    Bonnor, W. B. and Vickers, P. A. 1981. Gen. Rel. Gray. 13 29.ADSGoogle Scholar
  10. [10]
    Whittaker, E. T. 1935. Proc. R. Soc. A149 384.ADSGoogle Scholar
  11. [11]
    Cooperstock, F. I. and Sarracino, R. S. 1978. J. Phys. A: Math. Gen. 11 877.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    Cooperstock, F. I., Sarracino, R. S. and Bayin, S. S. 1981. J. Phys. A: Math. Gen. 14 181.MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    Devitt, J. and Florides, P. S. 1989. Gen. Rel. Gray. 21 585.MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    Bonnor, W. B. 1979. J. Phys. A: Math. Gen. 12 847.MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    Bonnor, W. B. and Davidson, W. 1992. (unpublished).Google Scholar
  16. [16]
    MacCallum, M. A. H. 1998. Gen. Rel. Gray. 30 131.MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • W. B. Bonnor

There are no affiliations available

Personalised recommendations