Gravitational Screening

  • E. A. Spiegel


Calculations of the stopping power of a medium lead to divergent integrals in gravitational theory as they do in the analogous electromagnetic problem. In the latter case, one usually introduces the Debye length as a cutoff at large distances to remove the divergence. The question of what to do in the Newtonian gravitational analogue can be answered by including the self-gravity of the medium. Then the Jeans length appears naturally as a cutoff. Despite the different sign of the coupling constant from the case of the electric plasma, the same sort of theory works in both cases and removes the need of introducing ad hoc cutoffs from both of them.


Impact Parameter Debye Length Cosmological Term Gravitational Instability Fourier Inversion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Debye, P. and Hückel, E. Physik. Z. 24, 185 (1923).MATHGoogle Scholar
  2. [2]
    Landau, L. D. and Lifshitz, E. M. Electrodynamics of Continuous Media, translated by J. B. Sykes and J. S. Bell (Addison-Wesley, Reading, MA, 1960), p. 344.MATHGoogle Scholar
  3. [3]
    Dokuchaev, V. P. Soy. Atron. 8, 23 (1964).MathSciNetADSGoogle Scholar
  4. [4]
    Ward, G. N. Linearized Theory of High Speed Flow (Cambridge Univ. Press, Cambridge, 1955).MATHGoogle Scholar
  5. [5]
    Lam, S. H. Phys. Fluids 8, 73 (1965).ADSCrossRefGoogle Scholar
  6. [6]
    Kraus, L. and Watson, K. M. Phys. Fluids 1, 480 (1958).MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    Julian, W. H. and Toomre, A. Astrophys. J. 146, 810 (1966).ADSCrossRefGoogle Scholar
  8. [8]
    Simkin, S. M. Astrophys. J. 159, 463 (1969).ADSCrossRefGoogle Scholar
  9. [9]
    Ichimaru, S. Statistical Plasma Physics I (Addison-Wesley, Reading, MA, 1992), p. 63.Google Scholar
  10. [10]
    Lyttleton, R. A. The Comets and Their Origin (Cambridge Univ. Press, Cambridge, 1953), p. 66.Google Scholar
  11. [11]
    Spiegel, E. A. p. 201 in Interstellar Gas Dynamics Int. Astr. Union, Symp. No. 39, H. Habing, ed. (D. Reidel, Dordrecht, 1970).Google Scholar
  12. [12]
    Ruderman, M. A. and Spiegel, E. A. Astrophys. J. 165, 1 (1971).ADSCrossRefGoogle Scholar
  13. [13]
    Eddington, A. S. The Internal Constitution of the Stars (Dover Pub., New York, 1959), p. 391.Google Scholar
  14. [14]
    Jeans, J. H. Astronomy and Cosmogony (Cambridge Univ. Press, Cambridge, 1928), p. 336.MATHGoogle Scholar
  15. [15]
    Bondi, H. Cosmology (Cambridge Univ. Press, Cambridge, 1960).MATHGoogle Scholar
  16. [16]
    Eddington, A. S. The Mathematical Theory of Relativity (Cambridge Univ. Press, Cambridge, 1924), p. 161.MATHGoogle Scholar
  17. [17]
    Fridman, A. M. and Polyachenko, V.L. Physics of Gravitating Systems, two volumes, (Springer-Verlag, New York, 1984); translated from the Russian by A. B. Aries and I. N. Poliakoff.CrossRefGoogle Scholar
  18. [18]
    Kukharenko, Yu., Vityazev, A., and Bashkirov, A. Phys. Lett. A 195, 27 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • E. A. Spiegel

There are no affiliations available

Personalised recommendations