Some Remarks on Twistor Theory

  • Roger Penrose


The influence of Engelbert Schucking on the development of twistor theory is pointed out, particularly with regard to conformal invariance, the positive-frequency condition, and complexification. The current status of the problem of encoding the Einstien field equations into twistor geometry is also outlined.


Holomorphic Function Conformal Invariance Twistor Space Positive Frequency Homogeneity Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bailey, T. N., Ehrenpreis, L. and Wells, R. O. Jr. (1982). Weak solutions of the massless field equations, Proc. Roy. Soc. London A384, 403–425.MathSciNetADSGoogle Scholar
  2. [2]
    Bateman, H. (1904). The solution of partial differential equations by means of definite integrals, Proc. Lond. Math. Soc. 2 (1), 451–458.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Bateman, H. (1910). The transformation of the electrodynamical equations, Proc. Lond. Math. Soc. 2 (8), 223–264.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Bateman, H. (1944). Partial Differential Equations of Mathematical Physics (Dover, New York).zbMATHGoogle Scholar
  5. [5]
    Bocher, M. (1914). The infinite regions of various geometries, Bull. Amer. Math. Soc. 20, 185–200.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Coxeter, H. S. M. (1936). The representation of conformal space on a quadric, Ann. Math. 37, 416–426.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Cunningham, E. (1910). The principle of relativity in electrodynamics and an extension thereof. Proc. Lond. Math. Soc. 28, 77–98.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Eastwood M. G., Penrose, R., and Wells, R. O., Jr. (1981). Cohomology and massless fields, Comm. Math. Phys. 78, 305–351.MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [9]
    Kodaira, K. (1962). A theorem of completeness of characteristic systems for analytic submanifolds of a complex manifold, Ann. Math. (2) 75, 146–162.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Kodaira, K. (1963). On stability of compact submanifolds of complex manifolds, Am. J. Math. 85, 79–94.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Kodaira, K. and Spencer, D.C. (1958). On deformations of complex analytic structures I, II, Ann. Math. 67,328–401,403–466.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    McLennan, J. A., Jr. (1956). Conformal invariance and conservation laws for relativistic wave equations for zero rest mass, Nuovo. Cim. 3, 1360–1379.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Penrose, R. (1967). Twistor algebra, J. Math. Phys. 8, 345–366.MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. [14]
    Penrose, R. (1969). Solutions of the zero rest-mass equations, J. Math. Phys. 10, 38–39.MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    Penrose, R. (1976). Non-Linear gravitons and curved twistor theory Gen. Rel. Gray. 7,31–52.MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. [16]
    Penrose, R. (1979). On the twistor description of massless fields, in Complex Manifold Techniques in Theoretical Physics, eds. D. E. Lerner and P. D. Sommers (Pitman, San Francisco).Google Scholar
  17. [17]
    Penrose, R. (1987). On the origins of twistor theory, in Gravitation and Geometry: a volume in honour of I. Robinson. eds. W. Rindler and A. Trautman (Bibliopolis, Naples).Google Scholar
  18. [18]
    Penrose, R. (1992). Twistors as spin 3/2 charges, in Gravitation and Modern Cosmology (P.G.Bergmann’s 75th birthday vol.) eds. A. Zichichi, N. de Sabbata, and N.Sánchez (Plenum Press, New York).Google Scholar
  19. [19]
    Penrose, R. (1996). Twistor theory, the Einstein equations, and quantum mechanics, in Quantum Gravity: International School of Cosmology and Gravitation XIV Course (80th Birthday Dedication to Peter G. Bergmann), eds. P. G. Bergmann, V. de Sabbata and H.-J. Treder (World Scientific, Singapore).Google Scholar
  20. [20]
    Penrose, R. and Rindler, W. (1984). Spinors and Space-Time, Vol. 1: Two-Spinor Calculus and Relativistic Fields (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
  21. [21]
    Penrose, R. and Rindler, W. (1986). Spinors and Space-Time, Vol. 2: Spinor and Twistor Methods in Space-Time Geometry (Cambridge University Press, Cambridge).CrossRefGoogle Scholar
  22. [22]
    Whittaker, E. T. (1904). A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge University Press, Cambridge).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Roger Penrose

There are no affiliations available

Personalised recommendations