Advertisement

Deviation of Geodesics in FLRW Spacetime Geometries

  • George F. R. Ellis
  • Henk van Elst

Abstract

The geodesic deviation equation (“GDE”) provides an elegant tool to investigate the timelike, null and spacelike structure of spacetime geometries. Here we employ the GDE to review these structures within the Friedmann—LemaîtreRobertson—Walker (“FLRW”) models, where we assume the sources to be given by a noninteracting mixture of incoherent matter and radiation, and we also take a nonzero cosmological constant into account. For each causal case we present examples of solutions to the GDE and we discuss the interpretation of the related first integrals. The de Sitter spacetime geometry is treated separately.

Keywords

Deviation Vector Spacetime Geometry Intrinsic Curvature Raychaudhuri Equation Relativistic Cosmology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bronstein, I. N., and K. A. Semendjajew: Taschenbuch der Mathematik, 23rd Edn. (Frankfurt/Main: Harri Deutsch, Thun, 1987).Google Scholar
  2. [2]
    Ehlers, J.: Beiträge zur relativistischen Mechanik kontinuierlicher Medien,Akad. Wiss. Lit. Mainz, Abhandl. Math.-Nat. K1. 11(1961). Reprinted in Gen. Rel. Gray. 25 (1993), 1225.MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    Ehlers, J.: Survey of General Relativity, in Relativity, Cosmology, and Astrophysics, Ed. W Israel (Dordrecht: Reidel, 1973).Google Scholar
  4. [4]
    Ellis, G. F. R.: Relativistic Cosmology, in General Relativity and Cosmology,Proceedings of the XLVII Enrico Fermi Summer School, Ed. R K Sachs (New York: Academic Press, 1971).Google Scholar
  5. [5]
    Ellis, G. F. R.: Standard Cosmology, in Vth Brazilian School on Cosmology and Gravitation,Ed. M Novello (Singapore: World Scientific, 1987).Google Scholar
  6. [6]
    Ellis, G. F. R., and D. R. Matravers: Spatial Homogeneity and the Size of the Universe, in A Random Walk in Relativity and Cosmology (Raychaudhuri Festschrift), Eds. N Dadhich, J K Rao, J V Narlikar, and C V Vishveshswara (New Dehli: Wiley Eastern, 1985).Google Scholar
  7. [7]
    van Elst, H., and G. F. R. Ellis: The Covariant Approach to LRS Perfect Fluid Spacetime Geometries, Class. Quantum Gray. 13 (1996), 1099.ADSMATHCrossRefGoogle Scholar
  8. [8]
    Hawking, S. W., and R. Penrose: The Singularities of Gravitational Collapse and Cosmology, Proc. R. Soc. London A 314 (1970), 529.MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    Maartens, R.: Linearisation Instability of Gravity Waves? Phys. Rev. D 55 (1997), 463.MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    Matravers, D. R., and A. M. Aziz: A Note on the Observer Area-Distance Formula, Mon. Not. Astr. Soc. S.A. 47 (1988), 124.ADSGoogle Scholar
  11. [11]
    Mattig, W.: Über den Zusammenhang zwischen Rotverschiebung und scheinbarer Helligkeit, Astr. Nach. 284 (1958), 109.ADSCrossRefGoogle Scholar
  12. [12]
    Misner, C. W., K. S. Thorne, and J. A. Wheeler: Gravitation (San Francisco: Freeman and Co., 1973).Google Scholar
  13. [13]
    Page, D. N.: How Big is the Universe Today?, Gen. Rel. Gray. 15 (1983), 181.MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    Pirani, F. A. E.: On the Physical Significance of the Riemann Tensor, Acta Phys. Polon. 15 (1956), 389.MathSciNetGoogle Scholar
  15. [15]
    Pirani, F. A. E.: Invariant Formulation of Gravitational Radiation Theory, Phys. Rev. 105 (1957), 1089.MathSciNetADSMATHCrossRefGoogle Scholar
  16. [16]
    Raychaudhuri, A. K.: Relativistic Cosmology, Phys. Rev. 98 (1955), 1123.MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    Rindler, W.: Public and Private Space Curvature in Robertson—Walker Universes, Gen. Rel. Gray. 13 (1981), 457.MathSciNetADSMATHCrossRefGoogle Scholar
  18. [18]
    Robertson, H. P.: Relativistic Cosmology, Rev. Mod. Phys. 5 (1933), 62.ADSCrossRefGoogle Scholar
  19. [19]
    Sandage, A. R.: The Ability of the 200-Inch Telescope to Discriminate between Selected World-Models, Astrophys. J. 133 (1961), 355.MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    Schneider, P., J. Ehlers, and E. E. Falco: Gravitational Lenses (New York: Springer, 1992).CrossRefGoogle Scholar
  21. [21]
    Schouten, J. A.: Ricci Calculus (Berlin: Springer, 1954).MATHGoogle Scholar
  22. [22]
    Schrödinger, E.: Expanding Universes (Cambridge: Cambridge University Press, 1956).MATHGoogle Scholar
  23. [23]
    Synge, J. L.: On the Deviation of Geodesics and Null Geodesics, Particularly in Relation to the Properties of Spaces of Constant Curvature and Indefinite Line Element, Ann. Math. 35 (1934), 705.MathSciNetCrossRefGoogle Scholar
  24. [24]
    Synge, J. L.: General Relativity (Amsterdam: North Holland, 1960).MATHGoogle Scholar
  25. [25]
    Synge, J. L., and A. Schild: Tensor Calculus, (Toronto: University of Toronto Press, 1949). Reprinted: (New York: Dover Publ., 1978).Google Scholar
  26. [26]
    Szekeres, P.: The Gravitational Compass, J. Maths. Phys. 6 (1965), 1387.MathSciNetADSMATHCrossRefGoogle Scholar
  27. [27]
    Tipler, F. J.: Newtonian Cosmology Revisited, Mon. Not. Roy. Astr. Soc. 282 (1996), 206.ADSGoogle Scholar
  28. [28]
    Tipler, F. J.: Rigorous Newtonian Cosmology, Am. J. Phys. 64 (1996), 1311.ADSCrossRefGoogle Scholar
  29. [29]
    Wald, R. M.: General Relativity (Chicago: University of Chicago Press, 1984).MATHGoogle Scholar
  30. [30]
    Weinberg, S.: Gravitation and Cosmology (New York: John Wiley and Sons, 1972).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • George F. R. Ellis
  • Henk van Elst

There are no affiliations available

Personalised recommendations