Advertisement

On the Global Analysis of Linear Systems

  • Christopher I. Byrnes
Chapter
  • 955 Downloads

Abstract

In this chapter, we present a number of topics in linear systems theory from a global, geometric perspective. Among the topics studied are the geometry of spaces of scalar and multivariable systems, the scalar and matrix valued Hermite-Hurwitz Theorem, and the geometry of the deterministic partial realization problem. Inverse eigenvalue problems are also formulated geometrically and studied in the context of both degree theory and intersection theory as computed in cohomology rings. Applications to the problem of pole assignment by output feedback are also reviewed, the paper concludes with a review of the recent solution to the rational covariance extension problem in both a geometric and a variational setting.

Keywords

Output Feedback Maslov Index Hankel Matrix Pole Assignment Linear System Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. I. Akhiezer, The Classical Moment Problem, Hafner, 1965.Google Scholar
  2. [2]
    J. C. Alexander, Matrices, eigenvalues and complex projective space, Amer. Math. Monthly, 85, 1978.Google Scholar
  3. [3]
    B. D. O. Anderson, N. K. Bose, and E. Jury, Output feedback stabilization and related problems: solutions via decision methods, IEEE Trans. Auto. Control, AC-20, pages 53–66, 1975.Google Scholar
  4. [4]
    M. Aoki, State Space Modeling of Time Series, Springer-Verlag, New York, 1987.zbMATHCrossRefGoogle Scholar
  5. [5]
    V. I. Arnol’d, Characteristic classes Entering in quantization consitions, Funst. Anal. Appl., 1, pages 1–13, 1967.CrossRefGoogle Scholar
  6. [6]
    K. Aström and T. Bohlin, Numerical identification of linear dynamical systems from normal operating records, in Theory of Self-Adaptive Control Systems (P. H. Hammond, editor), Plenum, New York, 1966, pages 96–111.Google Scholar
  7. [7]
    K. Aström and T. Söderström, Uniqueness of the maximum likelihood estimates of the parameters of an ARMA model, IEEE Trans. Auto. Control, AC 19, pages 769–773, 1974.zbMATHCrossRefGoogle Scholar
  8. [8]
    A. Benveniste and C. Chaure, AR and ARMA identification algorithms of Levinson type: an identification approach, IEEE Trans. Auto. Control, AC-26, pages 1243–1261, 1981.Google Scholar
  9. [9]
    I. Bernstein, On the Lusternick-Schnirel’mann category of Grassmannians, Math. Proc. Camb. Phil. Soc., 79, pages 129–134, 1976.CrossRefGoogle Scholar
  10. [10]
    G. E. Bredon, Introduction to compact transformation groups, in Pure and Applied Mathematics, Vol. 46, Academic Press, New York, 1972.Google Scholar
  11. [11]
    R. W. Brockett, Finite-Dimensional Linear Systems, Wiley, New York, 1970.zbMATHGoogle Scholar
  12. [12]
    R. W. Brockett, The geometry of the partial realization problem, Proc. of 17th IEEE Decision and Control Conference, pages 1048–1052, 1978.Google Scholar
  13. [13]
    R. W. Brockett, Some geometric questions in the theory of linear systems, IEEE Trans. Auto. Control, AC 21, pages 449–455, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    R. W. Brockett, The geometry of the set of controllable linear systems, Res. Repts. of the Automatic Control Lab., Faculty of Engineering, Nagoya University, Vol. 24, July 1977.Google Scholar
  15. [15]
    R. W. Brockett and C. I. Byrnes, Multivariable Nyquist criteria, root loci and pole placement: a geometric viewpoint, IEEE Trans. Auto. Control, AC-26, pages 271–284, 1981.Google Scholar
  16. [16]
    R. W. Brockett and C. I. Byrnes, On the algebraic geometry of the output feedback pole placement map, Proc. 18th CDC, 1979.Google Scholar
  17. [17]
    R. W. Brockett and P. S. Krishnaprasad, Scaling rational functions and linear system identification, Proc. 1977 CISS, Department of Electrical Engineering, Johns Hopkins University, 1977.Google Scholar
  18. [18]
    C. I. Byrnes, On compactifications of spaces of systems and dynamic compensation, Proc. IEEE Conference on Decision and Control, San Antonio, TX, 1983, pages 889–894.Google Scholar
  19. [19]
    C. I. Byrnes, On the stabilizability of multivariable systems and the Ljusternik-nirel’mann category of real Grassmannians, Systems Control Lett,, 3, pages 255–262, 1983.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    C. I. Byrnes, Algebraic and geometric aspects of the analysis of feedback systems, in Geometric Methods in Linear Systems Theory (C. I. Byrnes and C. E Martin, editors), D. Reidel, Dordrecht, 1980, pages 85–124.CrossRefGoogle Scholar
  21. [21]
    C. I. Byrnes, The moduli space for linear dynamical systems, Proc. 1976 Ames (NASA) Conference on Geometric Control Theory (C. F. Martin and R. Hermann, editors), Math Sci Press, 1977, pages 229–276.Google Scholar
  22. [22]
    C. I. Byrnes, Algebraic and Geometric Aspects of the Analysis of Feedback Systems, in Geometrical Methods for the Theory of Linear Systems (C. I. Byrnes and C. F. Martin, editors), D. Reidel, Boston, 1980, pages 85–124.CrossRefGoogle Scholar
  23. [23]
    C. I. Byrnes and B. D. O. Anderson, Output feedback and generic stabilizability, SIAM J. Control Optim., 22, no. 3, pages 362–380, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    C. I. Byrnes, H. J. Landau, and A. Lindquist, Well-posedness of rational covariance extension (preprint).Google Scholar
  25. [25]
    C. I. Byrnes and D. F. Delchamps, Critical point behavior of objective functions defined on spaces of multivariable systems, Proceedings of 21st IEEE Conference on Decision and Control, 1982.Google Scholar
  26. [26]
    C. I. Byrnes and T. E. Duncan, On certain topological invariants arising in system theory, in New Directions in Applied Mathematics (P. Hilton and G. Young, editors), Springer-Verlag, New York, 1981, pages 29–71.Google Scholar
  27. [27]
    C. I. Byrnes, A. Lindquist, and T. T. Georgiou, A generalized entropy criterion for rational Nevanlinna-Pick interpolation, submitted IEEE Trans. Auto. Control. Google Scholar
  28. [28]
    C. I. Byrnes and N. Hurt, On the moduli of linear dynamical systems, in Advances in Mathematical Studies in Analysis, Vol. 4, 1979, pages 83–122.MathSciNetGoogle Scholar
  29. [29]
    C. I. Byrnes, A. Lindquist, and Y. Zhou, Stable, unstable, and center manifolds for fast filtering algorithms, in Modeling, Estimation and Control of Systems with Uncertainty (G. B. Di Masi, A. Gombani, and A. Kurzhanski, editors), Birkhäuser, Boston, 1991.Google Scholar
  30. [30]
    C. I. Byrnes, A. Lindquist, and Y. Zhou, On the nonlinear dynamics of fast filtering algorithms, SIAM J. Control Optim., 32, pages 744–789, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    C. I. Byrnes and A. Lindquist, The stability and instability of partial realizations, Systems Control Lett., 2, pages 2301–2312, 1982.MathSciNetCrossRefGoogle Scholar
  32. [32]
    C. I. Byrnes and A. Lindquist, Toward a solution of the minimal partial stochastic realization problem, C. R. Acad. Sci. Paris Ser. I Math., 319, no. 11, pages 1231–1236, 1994.MathSciNetzbMATHGoogle Scholar
  33. [33]
    C. I. Byrnes and A. Lindquist, On the partial stochastic realization problem, IEEE Trans. Auto. Control 42, no. 8, pages 1049–1070, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    C. I. Byrnes, A. Lindquist, S. V. Gusev, and A. S. Matveev, A complete parameterization of all positive rational extensions of a covariance sequence, IEEE Trans. Auto. Control 40, no. 11, pages 1841–1857, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    C. I. Byrnes, S. V. Gusev, and A. Lindquist, Convex optimization for rational covariance extensions, to appear in SIAM J. Control Optim. Google Scholar
  36. [36]
    C. I. Byrnes, A. Lindquist, and T. McGregor, Predictability and unpredictability in Kaiman filtering, IEEE Trans. Auto. Control, AC-36, pages 563–579, 1991.Google Scholar
  37. [37]
    C. I. Byrnes and A. Lindquist, On minimal partial realizations of a linear input/output map, in Aspects of Network and System Theory (R. E. Kaiman and N. de Claris, editors), Holt, Rinehart and Winston, 1971, pages 385–408.Google Scholar
  38. [38]
    C. I. Byrnes and A. Lindquist, On partial realizations, transfer functions, and canonical forms, Acta Polytech. Scand., MA31, pages 9–39, 1979.Google Scholar
  39. [39]
    C. I. Byrnes and X. Wang, The additive inverse eigenvalue problem for Lie perturbations, SIAM J. Matrix Anal. Appl., 14, no. 1, pages 113–117, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    J. A. Cadzow, Spectral estimation: an overdetermined rational model equation approach, Proc. IEEE, 70, pages 907–939, 1982.CrossRefGoogle Scholar
  41. [41]
    C. Carathéodory, “Uber den Variabilit” atsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann., 64, pages 95–115 1907.MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    C. Carathéodory, “Uber den Variabilit” atsbereich der Fourierschen Konstanten von positiven harmonischen Functionen, Rend, di Palermo, 32, pages 193–217, 1911.zbMATHCrossRefGoogle Scholar
  43. [43]
    A. Cauchy, Calcul des indices des functions, J. L’École Polytechnique, pages 196–229, 1835.Google Scholar
  44. [44]
    Y. Chen, General Theory of Lie Algebras, Gordon and Breach, New York, 1978.Google Scholar
  45. [45]
    J. M. C. Clark, The consistent selection of local coordinates in linear system identification, Proceedings of the Joint Automatic Control Conference, 1976 pages 576–580.Google Scholar
  46. [46]
    D. F. Delchamps, The geometry of spaces of linear systems with an application to the identification problem, Ph.D. thesis, Harvard University, 1982.Google Scholar
  47. [47]
    D. F. Delchamps, State Space and Input-Output Linear Systems, Springer-Verlag New York, 1988.zbMATHCrossRefGoogle Scholar
  48. [48]
    Ph. Delsarte, Y. Genin, Y. Kamp, and P. van Dooren, Speech modelling and the trigonometric moment problem, Philips J. Res., 37, pages 277–292, 1982.MathSciNetzbMATHGoogle Scholar
  49. [49]
    P. van Overschee and B. De Moor, Subspace algorithms for stochastic identification problem, IEEE Trans. Auto. Control, AC-27, pages 382–387, 1982.Google Scholar
  50. [50]
    C. J. Demeure and C. T. Mullis, The Euclid algorithm and the fast computation of cross-covariance and autocovariance sequences, IEEE Trans. Acoustics Speech Signal Process., ASSP-37, pages 545–552, 1989.Google Scholar
  51. [51]
    M. Denham, Canonical forms for the identification on multivariable linear systems, IEEE Trans. Auto. Control, AC 19, pages 646–655, 1974.Google Scholar
  52. [52]
    S. Eilenberg, Sur un théorème topologique de M.L. Schnirel’mann, Mat. Sb. 1, pages 557–559, 1936.Google Scholar
  53. [53]
    L. Euler, De fractionibus continuis dissertatio, Proc. National Academy of St. Petersburg, Opera Omnia, I.14, 1744 (in Latin). English translation by M. F. Wyman and B. F. Wyman, Math. Systems Theory, 18, pages 295-328, 1985.Google Scholar
  54. [54]
    S. Friedland, Matrices with prescribed off-diagonal elements, Israel J. Math., 11, pages 184–189, 1972.MathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    F. R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.zbMATHGoogle Scholar
  56. [56]
    T. T. Georgiou, Realization of power spectra from partial covariance sequences, IEEE Trans. Acoustics Speech Signal Process., ASSP-35, pages 438–449, 1987.Google Scholar
  57. [57]
    K. Glover, Structural aspects of system identification, Ph.D. thesis, Department of Electrical Engineering, Electronic Systems Laboratory, MIT, Cambridge, MA, 1973, Report # ELS-R-516.Google Scholar
  58. [58]
    K. Glover and J. C. Willems, Parametrizations of linear dynamical systems: canonical forms and identifiability, IEEE Trans. Auto. Control, AC 19, pages 640–645, 1974.Google Scholar
  59. [59]
    W. B. Gragg and A. Lindquist, On the partial realization problem, Linear Algebra Appl., 50, pages 277–319,1983.MathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    U. Grenander and G. Szegö, Nonlinear Methods of Spectral Analysis, University of California Press, 1958.Google Scholar
  61. [61]
    E. J. Hannan, System identification, in Stochastic Systems: The Mathematics of Filtering and Identification and Applications (M. Hazewinkel and J. C. Willems, editors), D. Reidel, Dordrecht, 1981, pages 221–246.CrossRefGoogle Scholar
  62. [62]
    M. Hazewinkel, Moduli and canonical forms of linear dynamical systems II: the topological case, Math. Systems Theory, 10, pages 363–385, (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    M. Hazewinkel and R. E. Kaiman, On invariants, canonical forms, and moduli for linear constant, finite-dimensional dynamical systems, in Lecture Notes in Econ.-Mathematical System Theory, Vol. 131, Springer-Verlag, New York, 1976, pages 48–60.Google Scholar
  64. [64]
    R. Hermann and C. F. Martin, Applications of algebraic geometry to linear system theory, IEEE Trans. Auto. Control, AC-22, pages 19–25, 1977.Google Scholar
  65. [65]
    R. Hermann and C. F. Martin, Applications of algebraic geometry to system theory: the McMillan degree and Kronecker indices as topological and holomorphic invariants, SIAM J. Control Optim., 16, no. 5, pages 743–755, 1978.MathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    C. Hermite, Sur les nombres des Racines d’une équation algébrique comprises entre des limites données, J. Reine Angew. Math., 52, pages 39–51, (1856).zbMATHCrossRefGoogle Scholar
  67. [67]
    L. Hörmander, Fourier integral operators, I, Acta Math., 127, pages 79–183, 1971.MathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    S. Haykin, Toeplitz Forms and Their Applications, Springer-Verlag, New York, 1979.Google Scholar
  69. [69]
    A. Hurwitz, Über die bedingungen unter welchen eine gleichung nur wurzeln mit negativen reelen theilen besitzt, Math. Ann., 46, pages 273–284, 1895.MathSciNetzbMATHCrossRefGoogle Scholar
  70. [70]
    N. Jacobson, Lie Algebras, Dover, New York, 1979.Google Scholar
  71. [71]
    I. M. James, On category, in the sense of Lusternik Schnirel’mann, Topology, 17, pages 341–348, 1978.Google Scholar
  72. [72]
    R. E. Kaiman, Global structure of classes of linear dynamical systems, Proc. NATO Advanced Study Institute on Geometric and Algebraic Methods for Nonlinear Systems, 1973.Google Scholar
  73. [73]
    R. E. Kaiman, Realization of covariance sequences, Proc. Toeplitz Memorial Conference (1981), Tel Aviv, Israel, 1981.Google Scholar
  74. [74]
    S. M. Kay and S. L. Marple, Jr., “Spectrum analysis: a modem perspective,” Proc. IEEE, 69, pages 1380–1419, (1981).CrossRefGoogle Scholar
  75. [75]
    H. Kimura, Positive partial realization of covariance sequences, in Modelling, Identification and Robust Control (C. I. Byrnes and A. Lindquist, editors), North-Holland, 1987, pages 499–513.Google Scholar
  76. [76]
    P.S. Krishnaprasad, On the geometry of linear passive systems, in Algebraic and Geometric Methods in Linear System Theory, AMS Lectures in Applied Mathematics 18, 1980, pages 253–276.MathSciNetGoogle Scholar
  77. [77]
    L. Kronecker, Über Systems von Funkionen mehrerer Variabein, Monatsber. König. Preuss. Akad. Wiss., Berlin, 1869, pages 159–193 and 253-276.Google Scholar
  78. [78]
    L. Kronecker, Zur Theorie der Elimination einer Variabein aus zwei algebraischen Gleichnungen, Monatsber. König. Preuss. Akad. Wiss., Berlin, 1881.Google Scholar
  79. [79]
    C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bur. Standards, 45, pages 255–282, 1950.MathSciNetCrossRefGoogle Scholar
  80. [80]
    A. Lindquist, A new algorithm for optimal filtering of discrete-time stationary processes, SIAM J. Control Optim., 12, pages 736–746, 1974.MathSciNetzbMATHCrossRefGoogle Scholar
  81. [81]
    A. Lindquist, Some reduced-order non-Riccati equations for linear least-squares estimation: the stationary, single-output case, Int. J. Control, 24, pages 821–842, 1976.MathSciNetzbMATHCrossRefGoogle Scholar
  82. [82]
    A. Lindquist and G. Picci, On “subspace method identification” and stochastic model reduction, Proceedings of the 10th IF AC Symposium on Systems Identification, Copenhagen, June 1994, pages 397–403.Google Scholar
  83. [83]
    A. Lindquist and G. Picci, Canonical correlation analysis, approximate covariance extension, and identification of stationary time series, Automatica, 32, pages 709–733, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  84. [84]
    L. Ljusternik and L. Nirel’mann, Methodes Topologiques dans les Probleme Variation-nels, Hermann, Paris, 1934.Google Scholar
  85. [85]
    A. Magnus, Certain continued fractions associated with the Padé table, Math. Z, 78, pages 361–374, 1962.MathSciNetzbMATHCrossRefGoogle Scholar
  86. [86]
    J. Makhoul, Linear prediction: a tutorial review, Proc. IEEE, 63, pages 561–580, 1975.CrossRefGoogle Scholar
  87. [87]
    J. W. Milnor, Morse Theory, Princeton University Press, Princeton, NJ, 1963.zbMATHGoogle Scholar
  88. [88]
    D. Mumford, Geometric Invariant Theory, Springer-Verlag, Berlin, 1965.zbMATHGoogle Scholar
  89. [89]
    J. Rissanen, Recursive identification of linear systems, SIAM J. Control Optim., 9, pages 420–430, 1971.MathSciNetCrossRefGoogle Scholar
  90. [90]
    J. Rosenthal, J. M. Schumacher, X. Wang, and J. C. Willems, Generic eigenvalue assignment for generalized linear first-order systems, Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, 1995, pages 492–497.Google Scholar
  91. [91]
    I. Schur, On power series which are bounded in the interior of the unit circle I and II, J. Reine Angew. Math., 148, pages 122–145, 1918.Google Scholar
  92. [92]
    G. Segal, The topology of spaces of rational functions, Acta Math., 143, pages 39–72, 1979.MathSciNetzbMATHCrossRefGoogle Scholar
  93. [93]
    R. E. Stong, “Cup products in Grassmannians,” Topoplogy Appl., 13, pages 103–113, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  94. [94]
    A. Tannenbaum, Invariance and System Theory: Algebraic and Geometric Aspects, Lecture Notes in Mathematics, # 845, Springer-Verlag, New York, 1981.zbMATHGoogle Scholar
  95. [95]
    X. Wang, Grassmannian, central projection, and output feedback pole assignment of linear systems, IEEE Trans. Auto. Control, 41, no. 6, pages 786–794, 1996.zbMATHCrossRefGoogle Scholar
  96. [96]
    X. Wang, Pole placement by static output feedback, J. Math. Systems Estim. Control, 2, no. 2, pages 205–218, 1992.MathSciNetGoogle Scholar
  97. [97]
    X.-C. Wang, Geometric inverse eigenvalue problems, in Computation and Control (K. Bowers and J. Lund, editors), Birkhäuser, Boston, 1989, pages 375–383.CrossRefGoogle Scholar
  98. [98]
    X. Wang, Additive inverse eigenvalue problems and pole placement of linear systems, Ph.D. thesis, Arizona State University, Tempe, AZ, 1989.Google Scholar
  99. [99]
    J. C. Willems and W. H. Hesselink, Generic properties of the pole-placement problem, Proc. of the 7th IFAC Congress, 1978, pages 1725–1729.Google Scholar
  100. [100]
    A. S. Willsky, Digital Signal Processing and Control and Estimation Theory, MIT Press, Cambridge, MA, 1979.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Christopher I. Byrnes

There are no affiliations available

Personalised recommendations