Discrete Gauge Theories

  • Mark Wild de Propitius
  • F. Alexander Bais
Part of the CRM Series in Mathematical Physics book series (CRM)


We present a self-contained treatment of planar gauge theories broken down to some finite residual gauge group H via the Higgs mechanism. The main focus is on the discrete H gauge theory describing the long-distance physics of such a model. The spectrum features global H charges, magnetic vortices, and dyonic combinations. Due to the AharonovBohm effect, these particles exhibit topological interactions. Among other things, we review the Hopf algebra related to this discrete H gauge theory, which provides a unified description of the spin, braid, and fusion properties of the particles in this model. Exotic phenomena such as flux metamorphosis, Alice fluxes, Cheshire charge, (non-)Abelian braid statistics, the generalized spin-statistics connection, and non-Abelian AharonovBohm scattering are explained and illustrated by representative examples.


Gauge Theory Gauge Group Braid Group Fusion Rule Magnetic Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Coleman. Classical lumps and their quantum descendents. In Aspects of Symmetry. Cambridge Univ. Press, Cambridge, pages 185–264, 1985.Google Scholar
  2. 2.
    N. D. Mermin The topological theory of defects in ordered media. Rev. Mod. Phys., 51 (3): 591–648, 1979.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    J. Preskill. Vortices and monopoles. In P. Ramond and R. Stora, eds., Architecture of the Fundamental Interactions at Short Distances. North-Holland, Amsterdam, pages 235–338, 1987.Google Scholar
  4. 4.
    R. Rajaraman. Solitons and Instantons. North-Holland, Amsterdam, 1982.MATHGoogle Scholar
  5. 5.
    A. Abrikosov. On the magnetic properties of superconductors of the second group. Soy. Phys.-JETP,5 (6): 1174–1182, 1957.Google Scholar
  6. 6.
    H. B. Nielsen and P. Olesen. Vortex line models for dual strings. Nucl. Phys.,B61 (1): 45–61, 1973.MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    G. ‘t Hooft. Magnetic monopoles in unified gauge theories. Nucl. Phys.,B79: 276–284, 1974.ADSCrossRefGoogle Scholar
  8. 8.
    A. M. Polyakov. Particle spectrum in quantum field theory. JETP Lett., 20 (6): 194–195, 1974.ADSGoogle Scholar
  9. 9.
    P. A. M. Dirac. Quantised singularities in the electromagnetic field. Proc. Roy. Soc. London, A133: 60–72, 1931.ADSGoogle Scholar
  10. 10.
    T. H. R. Skyrme. A nonlinear field theory. Proc. Roy. Soc., A260: 127–138,1961.MathSciNetADSGoogle Scholar
  11. 11.
    D. Finkelstein and J. Rubinstein. Connection between spin, statistics, and kinks. J. Math. Phys.,9: 1762–1779, 1968.MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    E. Witten. Current algebra, baryons, and quark confinement. Nucl. Phys., B223 (2): 433–444, 1983.MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    R. H. Brandenberger.Topological defects and structure formation. Int. J. Mod. Phys.,9 (13): 2117–2189, 1994.ADSCrossRefGoogle Scholar
  14. 14.
    G. E. Volovik. Exotic Properties of Superfluid 3He, volume 1 of Series in Modern Condensed Matter Physics. World Scientific, Singapore, 1992.Google Scholar
  15. 15.
    M. Bowick, L. Chandar, E. A. Schiff, and A. Srivastava. The cosmological Kibble mechanism in the laboratory: string formation in liquid crystals. Science, 263: 943–945, 1994.ADSCrossRefGoogle Scholar
  16. 16.
    I. Chuang, R. Durrer, N. Turok, and B. Yurke. Cosmology in the laboratory: defect dynamics in liquid crystals. Science, 251: 1336–1342, 1991.ADSCrossRefGoogle Scholar
  17. 17.
    A. P. Balachandran, G. Marmo, N. Mukunda, J. S. Nilsson, E. C. G. Sudarshan, and F. Zaccaria. Monopole topology and the problem of color. Phys. Rev. Lett., 50 (20): 1553–1555, 1983.MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    P. Nelson and A. Manohar. Global color is not always defined. Phys. Rev. Lett., 50 (13): 943–945, 1983.MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    P. Nelson and S. Coleman. What becomes of global color. Nucl. Phys., B237 (1): 1–31, 1984.ADSCrossRefGoogle Scholar
  20. 20.
    F. A. Bais, P. van Driel, and M. de Wild Propitius. Quantum symmetries in discrete gauge theories. Phys. Lett., B280 (1–2): 63–70, 1992.ADSGoogle Scholar
  21. 21.
    A. P. Balachandran, F. Lizzi, and V. G. Rodgers. Topological symmetry breakdown in cholesterics, nematics and 3He. Phys. Rev. Lett., 52 (20): 1818–1821, 1984.ADSCrossRefGoogle Scholar
  22. 22.
    E. Witten. Dyons of charge eθ/(2π). Phys. Lett., B86 (3): 283–287, 1979.ADSGoogle Scholar
  23. 23.
    P. Hasenfratz and G. ‘t Hooft. Fermion-boson puzzle in a gauge theory. Phys. Rev. Lett., 36 (19): 1119–1122, 1976.ADSCrossRefGoogle Scholar
  24. 24.
    R. Jackiw and C. Rebbi. Spin from isospin in a gauge theory. Phys. Rev. Lett.,36 (19): 1116–1119, 1976.ADSCrossRefGoogle Scholar
  25. 25.
    F. Wilczek. Magnetic flux, angular momentum and statistics. Phys. Rev. Lett.,48: 1144–1146, 1982.MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    J. M. Leinaas and J. Myrheim. On the theory of identical particles. Nuovo.Cimento, 37B: 1–23, 1977.ADSGoogle Scholar
  27. 27.
    B. I. Halperin. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett., 52 (18): 1583–1586, 1984.ADSCrossRefGoogle Scholar
  28. 28.
    R. B. Laughlin. Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett., 50 (18): 1395–1398, 1983.ADSCrossRefGoogle Scholar
  29. 29.
    Y.-H. Chen, F. Wilczek, E. Witten, and B. I. Halperin. On anyon superconductivity. Int. J. Mod. Phys.,B3 (7): 1001–1067, 1989.MathSciNetADSGoogle Scholar
  30. 30.
    A. L. Fetter, C. B. Hanna, and R. B. Laughlin. Random-phase approximation in the fractional-statistics gas. Phys. Rev.,B39 (13): 9679–9681, 1989.ADSGoogle Scholar
  31. 31.
    R. B. Laughlin. Superconducting ground state of noninteracting particles obeying fractional statistics. Phys. Rev. Lett., 60 (25): 2677–2680, 1988.ADSCrossRefGoogle Scholar
  32. 32.
    F. Wilczek, ed. Fractional Statistics and Anyon Superconductivity. World Scientific, Teaneck, NJ, 1990.Google Scholar
  33. 33.
    G. ‘t Hooft. Symmetry breaking through Bell-Jackiw anomalies Phys. Rev. Lett.,37 (1): 8–11, 1976; G. ‘t Hooft. Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev.,D14 (12): 3432–3450, 1976.Google Scholar
  34. 34.
    V. A. Rubakov. Superheavy magnetic monopoles and proton decay. Pis’ma Zh. Eksp. Teor. Fiz., 33 (12): 658–660, 1981; V. A. Rubakov. Superheavy magnetic monopoles and proton decay. JETP Lett.,33 (12): 644–646, 1981; V. A. Rubakov. Adler-Bell-Jackiw anomaly and fermion number breaking in the presence of a magnetic monopole. Nucl. Phys.,B203 (2): 311–348, 1982.Google Scholar
  35. 35.
    C. Callan. Dyon-fermion dynamics. Phys. Rev., D26 (8): 2058–2068, 1982.ADSGoogle Scholar
  36. 36.
    C. Callan. Monopole catalysis of baryon decay. Nucl. Phys., B212 (3): 391–400, 1983.ADSCrossRefGoogle Scholar
  37. 37.
    M. G. Alford, J. March-Russell, and F. Wilczek. Enhanced baryon number violation due to cosmic strings. Nucl. Phys., B328 (1): 140–158, 1989.ADSCrossRefGoogle Scholar
  38. 38.
    A. S. Schwarz. Field theories with no local conservation of the electric charge Nucl. Phys., B208 (1): 141–158, 1982.ADSCrossRefGoogle Scholar
  39. 39.
    Y. Aharonov and D. Bohm. Significance of electromagnetic potential in the quantum theory. Phys. Rev., 115: 485–491, 1959.MathSciNetADSMATHCrossRefGoogle Scholar
  40. 40.
    F. A. Bais. Flux metamorphosis. Nucl. Phys., B170 (1, FS 1): 32–43, 1980.MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    F. A. Bais, P. van Driel, and M. de Wild Propitius. Anyons in discrete gauge theories with Chern-Simons terms. Nucl. Phys., B393 (3): 547–570, 1993.ADSCrossRefGoogle Scholar
  42. 42.
    F. A. Bais and M. de Wild Propitius. Quantum groups in the Higgs phase. Teoret. Mat. Fiz., 98 (3): 509–523, 1994.MathSciNetGoogle Scholar
  43. 43.
    M. de Wild Propitius. Topological Interactions in Broken Gauge Theories. Ph.D. thesis, Universiteit van Amsterdam, 1995.Google Scholar
  44. 44.
    F. A. Bais, A. Morozov, and M. de Wild Propitius. Charge screeing in the Higgs phase of Chern-Simons electrodynamics Phys. Rev. Lett., 71 (15): 2383–2386, 1993.ADSCrossRefGoogle Scholar
  45. 45.
    T. D. Imbo and J. March-Russell. Exotic statistics on surfaces. Phys. Lett., B252 (1): 84–90, 1990.MathSciNetADSGoogle Scholar
  46. 46.
    M. G. G. Laidlaw and C. M. DeWitt. Feynman functional integrals for systems of indistinguishable particles. Phys. Rev., D3 (6): 1375–1378, 1971.ADSGoogle Scholar
  47. 47.
    L. S. Schulman. Techniques and Applications of Path Integration. Wiley, New York, 1981.Google Scholar
  48. 48.
    L. S. Schulman. Appoximate topologies. J. Math. Phys., 12 (2): 304–314,1971.ADSCrossRefGoogle Scholar
  49. 49.
    F. Wilczek. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett.,49 (14): 957–959, 1982.MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Y.-S. Wu. General theory for quantum statistics in two dimensions. Phys. Rev. Lett., 52 (24): 2103–2106, 1984.MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    L. Brekke, A. F. Falk, S. J. Hughes, and T. D. Imbo. Anyons from bosons. Phys. Lett.,B271 (1): 73–78, 1991.MathSciNetADSGoogle Scholar
  52. 52.
    L. Brekke, H. Dijkstra, A. F. Falk, and T. D. Imbo. Novel spin and statistical properties of non-Abelian vortices. Phys. Lett., B304 (1–2): 127–133, 1993.ADSGoogle Scholar
  53. 53.
    L. Krauss and F. Wilczek. Discrete gauge symmetry in continuum theories. Phys. Rev. Lett., 62 (11): 1221–1223, 1989.ADSCrossRefGoogle Scholar
  54. 54.
    J. Preskill and L. Krauss. Local discrete symmetry and quantum-mechanical hair. Nucl. Phys., B341 (1): 50–100, 1990.MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    P. G. de Gennes. Superconductivity of Metals and Alloys. Benjamin, New York, 1966.MATHGoogle Scholar
  56. 56.
    S. Forte. Quantum mechanics and field theory with fractional spin and statistics. Rev. Mod. Phys., 64 (1): 193–236, 1992.MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    K. Li. Remarks on local discrete symmetry. Nucl. Phys., B361 (2): 437–450, 1991.ADSCrossRefGoogle Scholar
  58. 58.
    M. G. Alford and J. March-Russell. Discrete gauge theories. Fractional statistics in action. Int. J. Mod. Phys., B5 (16–17): 2641–2673, 1991.MathSciNetADSGoogle Scholar
  59. 59.
    M. G. Alford, K.-M. Lee, J. March-Russell, and J. Preskill. Quantum field theory of non-Abelian strings and vortices. Nucl. Phys., B384 (1–2): 251–317, 1992.MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    M. G. Alford and J. March-Russell. New order parameters for non-Abelian gauge theories. Nucl. Phys.,B369 (1–2): 276–298, 1992.MathSciNetADSCrossRefGoogle Scholar
  61. 61.
    H.-K. Lo. Aharonov-Bohm order parameters for non-Abelian gauge theories. Phys. Rev., D52 (12): 7247–7264, 1995; H.-K. Lo. Order parameters for non-Abelian gauge theories. Technical Report IASSNS-HEP-94/2, hep-th/9411133, Institute for Advanced Study, 1994; H.-K. Lo. Elusive order parameters for non-Abelian gauge theories. Technical Report IASSNS-HEP-95/4, hep-th/9502079, Institute for Advanced Study, 1995.Google Scholar
  62. 62.
    M. Polikarpov, U.-J. Wiese, and M. Zubkov. String representation of the Abelian Higgs theory and Aharonov-Bohm effect on the lattice. Phys. Lett., B309: 133–138, 1993.ADSGoogle Scholar
  63. 63.
    G. ‘t Hooft. On the phase transition towards permanent quark confinement. Nucl. Phys., B138 (1): 1–25, 1978; G. ‘t Hooft. A property of electric and magnetic flux in non-Abelian gauge theories. Nucl. Phys., B153 (1–2): 141–160, 1979.Google Scholar
  64. 64.
    K. Wilson. Confinement of quarks. Phys. Rev., D10 (8): 2445–2459, 1974.ADSGoogle Scholar
  65. 65.
    A. M. Polyakov. Quark confinement and topology of gauge groups. Nucl. Phys., B120 (3): 429–458, 1977.MathSciNetADSCrossRefGoogle Scholar
  66. 66.
    R. F. Streater and A. S. Wightman. PCT, Spin, and Statistics and All That. Benjamin, New York, 1964.Google Scholar
  67. 67.
    A. P. Balachandran, A. Daughton, Z.-C. Gu, G. Marmo, R. D. Sorkin, and A. M. Srivastava. A topological spin-statistics theorem or a use of the antiparticle. Mod. Phys. Lett., A5 (20): 1575–1585, 1990.MathSciNetADSGoogle Scholar
  68. 68.
    A. P. Balachandran, R. D. Sorkin, W. D. McGlinn, L. O’Raifeartaigh, and S. Sen. The spin-statistics connection from homology groups of configuration space and an anyon Wess-Zumino term. Int. J. Mod. Phys., A7 (27): 6887–6906, 1992.MathSciNetADSGoogle Scholar
  69. 69.
    J. Fröhlich and P.-A. Marchetti. Spin-statistics theorem and scattering in planar quantum field theories with braid statistics. Nucl. Phys., B356 (3): 533–573, 1991.ADSCrossRefGoogle Scholar
  70. 70.
    J. Fröhlich, F. Gabbiani, and P.-A. Marchetti. Braid statistics in three-dimensional local quantum theory. In H.-C. Lee, ed., Physics, Geometry. and Topology,(Banff, 1989), volume 238 of NATO ASI, 1990. Plenum Press, New York, pages 15–79.Google Scholar
  71. 71.
    H.-K. Lo and J. Preskill. Non-Abelian vortices and non-Abelian statistics. Phys. Rev., D48 (10): 4821–4834, 1993.MathSciNetADSGoogle Scholar
  72. 72.
    M. G. Alford, J. March-Russell, and F. Wilczek. Discrete quantum hair on black holes and the non-Abelian Aharonov-Bohm effect. Nucl. Phys.,B337 (3): 695–708, 1990.ADSCrossRefGoogle Scholar
  73. 73.
    B. A. Ovrut. Isotropy subgroups of SO(3) and Higgs potentials. J. Math. Phys.,19 (2): 418–425, 1978.MathSciNetADSCrossRefGoogle Scholar
  74. 74.
    H.-R. Trebin. The topology of nonuniform media in condensed matter physics. Adv. Phys.,31 (3): 195–254, 1982.MathSciNetADSCrossRefGoogle Scholar
  75. 75.
    V. Poénaru and G. Toulouse. The crossing of defects in ordered media and the topology of 3-manifolds. J. Phys., 38 (8): 887–895, 1977.CrossRefGoogle Scholar
  76. 76.
    F. A. Bais and R. Laterveer. Exact regular ZN monopole solutions in gauge theories with nonadjoint Higgs representations. Nucl. Phys., B307 (3): 487–511, 1988.MathSciNetADSCrossRefGoogle Scholar
  77. 77.
    M. Bucher. The Aharonov-Bohm effect and exotic statistics for non-Abelian vortices. Nucl. Phys., B350 (1–2): 163–178, 1991.MathSciNetADSCrossRefGoogle Scholar
  78. 78.
    M. G. Alford, S. Coleman, and J. March-Russell.Disentangling non-Abelian discrete quantum hair Nucl. Phys., B351 (3): 735–748, 1991.MathSciNetADSCrossRefGoogle Scholar
  79. 79.
    K.-M. Lee. Vortices on higher genus surfaces. Phys. Rev.,D49 (4): 2030–2040,1994.ADSGoogle Scholar
  80. 80.
    M. G. Alford, K. Benson, S. Coleman, J. March-Russell, and F. Wilczek. Interactions and excitations of non-Abelian vortices. Phys. Rev. Lett., 64 (14): 1623–1635, 1990; M. G. Alford, K. Benson, S. Coleman, J. March-Russell, and F. Wilczek. Zero modes of non-Abelian vortices. Nucl. Phys.,B349 (2): 414–438, 1991.Google Scholar
  81. 81.
    L. Alvarez-Gaumé, C. Gomez, and G. Sierra. Hidden quantum symmetries in rational conformal field theories. Nucl. Phys., B319 (1): 155–186, 1989.ADSCrossRefGoogle Scholar
  82. 82.
    L. Alvarez-Gaumé, C. Gomez, and G. Sierra. Duality and quantum groups. Nucl. Phys., B330 (2–3): 347–398, 1990.ADSCrossRefGoogle Scholar
  83. 83.
    E. Witten. Quantum field theory and the Jones polynomials. Commun. Math. Phys.,121 (3): 351–399, 1989.MathSciNetADSMATHCrossRefGoogle Scholar
  84. 84.
    V. G. Drinfel’d. Quantum groups. In Proceedings of the International Congress of Mathematicians, (Berkeley, 1986), 1987. Amer. Math. Soc., Providence, RI, pages 798–820.Google Scholar
  85. 85.
    V. G. Drinfel’d. Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations. In Problems of Modern Quantum Field Theory, (Alushta, 1989), 1989. Springer, Berlin, pages 1–13.Google Scholar
  86. 86.
    S. Shnider and S. Sternberg. Quantum groups. From Coalgebras to Drinfel’d Algebras. A Guided Tour, volume 2 of Graduate Texts in Mathematical Physics. International Press, Cambridge, MA, 1993.Google Scholar
  87. 87.
    R. Dijkgraaf, V. Pasquier, and P. Roche. Quasi Hopf algebras, group cohomology and orbifold models. In Recent Advances in Field Theory, (Annecy-le-Vieux, 1990), volume 18B of Nuclear Phys. B. Proc. Suppl., 1991. North-Holland, Amsterdam, pages 60–72.Google Scholar
  88. 88.
    R. Dijkgraaf, C. Vafa, E. Verlinde, and H. Verlinde. The operator algebra of orbifold models. Commun. Math. Phys., 123 (3): 485–526, 1989.MathSciNetADSMATHCrossRefGoogle Scholar
  89. 89.
    R. Dijkgraaf and E. Witten. Topological gauge theories and group cohomology. Commun. Math. Phys., 129 (2): 393–429, 1990.MathSciNetADSMATHCrossRefGoogle Scholar
  90. 90.
    P. van Driel and M. de Wild Propitius. Truncated braid groups. unpublished, 1990.Google Scholar
  91. 91.
    E. Verlinde. Fusion rules and modular transformations in 2d conformal field theory. Nucl. Phys., B300 (3): 360–376, 1988.MathSciNetADSCrossRefGoogle Scholar
  92. 92.
    G. Moore and N. Seiberg. Classical and quantum conformal field theory. Commun. Math. Phys.,123 (2): 177–254, 1989.MathSciNetADSMATHCrossRefGoogle Scholar
  93. 93.
    A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47 (1): 777–780, 1935.ADSMATHCrossRefGoogle Scholar
  94. 94.
    L. Carroll. Alice’s Adventures in Wonderland. Macmillan, London, 1865.Google Scholar
  95. 95.
    E. Verlinde. A note on braid statistics and the non-Abelian Aharonov-Bohm effect. In S. Das et al., eds., Modern Quantum Field Theory, (Bombay, 1990), 1991. World Scientific, River Edge, NJ, pages 450–461.Google Scholar
  96. 96.
    C. C. Adams. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. Freeman, New York, 1994.MATHGoogle Scholar
  97. 97.
    L. H. Kauffman. Knots and Physics. World Scientific, Singapore, 1991.MATHGoogle Scholar
  98. 98.
    M. Peshkin and A. Tonomura. The Aharonov-Bohm Effect, volume 340 of Lecture Notes in Physics. Springer-Verlag, Berlin-New York, 1989.CrossRefGoogle Scholar
  99. 99.
    A. D. Thomas and G. V. Wood. Group Tables, volume 2 of Shiva Mathematics Series. Shiva Publishing Ltd., Nantwich, 1980.Google Scholar
  100. 100.
    F. A. Bais, A. Morozov, and M. de Wild Propitius. In preparation.Google Scholar
  101. 101.
    J. March-Russell, J. Preskill, and F. Wilczek. Internal frame dragging and a global analog of the Aharonov-Bohm effect. Phys. Rev. Lett.,68 (17): 2567–2571, 1992.MathSciNetADSMATHCrossRefGoogle Scholar
  102. 102.
    M. V. Khazan. Analog of the Aharonov-Bohm effect in superfluid He3-A. Pis’ma Zh. Eksp. Teor. Fiz., 41 (9): 396–398, 1985; M. V. Khazan. Analog of the Aharonov-Bohm effect in superfluid He3-A. JETP Lett., 41 (9): 486–488, 1985.Google Scholar
  103. 103.
    A. C. Davis and A. P. Martin. Global string and the Aharonov-Bohm effect. Nucl. Phys., B419: 341–351, 1994.ADSCrossRefGoogle Scholar
  104. 104.
    S. Deser and R. Jackiw. Classical and quantum scattering on a cone. Commun. Math. Phys., 118 (3): 495–509, 1988.MathSciNetADSMATHCrossRefGoogle Scholar
  105. 105.
    G. ‘t Hooft. Nonperturbative 2 particle scattering amplitudes in (2 + 1)-dimensional quantum gravity. Commun. Math. Phys., 117 (4): 685–700, 1988.ADSMATHCrossRefGoogle Scholar
  106. 106.
    E. Witten. (2 + 1)-dimensional gravity as an exactly soluble system. Nucl. Phys., B311 (1): 46–78, 1988/89.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Mark Wild de Propitius
  • F. Alexander Bais

There are no affiliations available

Personalised recommendations