Advertisement

Mathematical Modeling of Controlled-Release Systems of Herbicides Using Lignins as Matrices

A Review
  • Samuel C. Oliveira
  • Félix M. Pereira
  • André Ferraz
  • Flávio T. Silva
  • Adilson R. Gonçalves
Chapter
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

The herbicides applied in soils can be easily lost, owing to leaching, volatilization, and bio- and photodegradation. Controlled-release systems using polymeric matrices claim to solve these problems. The movement of the herbicides in the soil is also an important phenomenon to be studied in order to evaluate the loss processes. The development of mathematical models is a relevant requirement for simulation and optimization of such systems. This study reviews mathematical models as an initial step for modeling data obtained for controlled-release systems of herbicides (diuron, 2, 4-dichlorophenoxyacetic acid, and ametryn) using sugarcane bagasse lignin as a polymeric matrix. The release kinetic studies were carried out using several acceptor systems including a water bath, soil, and soil-packed columns. Generally, these models take into account phenomena such as unsteady-state mass transfer by diffusion (Fick’s law) and convection, consumption by several processes, and partitioning processes, resulting in partial differential equations with respect to time and space variables.

Index Entries

Mathematical modeling controlled-release formulations lignins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilkins, R. M. (1990), Controlled Delivery of Crop-Protection Agents, Taylor & Francis, London, pp. 149–165.Google Scholar
  2. 2.
    Cotrim, A. R., Souza, J. A., Ferraz, A., Silva, F. T., and Wilkins, R. M. (1994), in Third Brazilian Symposium on the Chemistry of Lignins and Other Wood Components, vol. 4, Piló-Veloso, D. and Ruggiero, R., eds., UFMG, Belo Horizonte, Brazil, pp. 278–281.Google Scholar
  3. 3.
    Silva, F. T. and Wilkins, R. M. (1992), in Second Brazilian Symposium on the Chemistry of Lignins and Other Wood Components, vol. 3, Durán, N. and Esposito, E., eds., UNICAMP, Campinas, Brazil, pp. 165–172.Google Scholar
  4. 4.
    Silva, F. T., Pereira C. A., Cotrim, A. R., Ferraz, A., and Wilkins, R. M. (1994), in Third Brazilian Symposium on the Chemistry of Lignins and Other Wood Components, vol. 4, Piló-Veloso, D. and Ruggiero, R., eds., UFMG, Belo Horizonte, Brazil, pp. 265–268.Google Scholar
  5. 5.
    Souza, J. A. (1994), MSc thesis, UNICAMP, Campinas, Brazil.Google Scholar
  6. 6.
    Ferraz, A., Souza, J. A., and Silva, F. T. (1992), in Second Brazilian Symposium on the Chemistry of Lignins and Other Wood Components, vol. 3, Durán, N. and Esposito, E., eds., UNICAMP, Campinas, Brazil, pp. 173–177.Google Scholar
  7. 7.
    Cotteril, J. V., Wilkins, R. M., and Silva, F. T. (1995), J. Controlled Release 40, 133–142.CrossRefGoogle Scholar
  8. 8.
    Costa, S. M., Gonçalves, A. R., Pereira, C. A., Cotrim, A. R., and Silva, F. T. (1996), XXXVI Congresso Brasileiro de Química (abstracts), São Paulo, Brazil.Google Scholar
  9. 9.
    Pereira, C. A. (1995), MSc thesis, FAENQUIL, Lorena, Brazil.Google Scholar
  10. 10.
    Giuliano, A. D. (1995), MSc thesis, USP, São Carlos, Brazil.Google Scholar
  11. 11.
    Fengel, D. and Wegener, G. (1989), Wood: Chemistry, Ultrastructure and Reactions, Walter de Gruyter, New York.Google Scholar
  12. 12.
    Meister, J. J. (1996), in Chemical Modification of Lignocellulosic Materials, Hon, D. N.-S., ed., Marcel Dekker, New York, pp. 129–157.Google Scholar
  13. 13.
    Kirk, T. K., Higushi, T., and Chang, H. (1981), Lignin Biodegradation: Microbiology, Chemistry and Potential Applications, vol. 1, CRC Press, Boca Raton, FL, p. 5.Google Scholar
  14. 14.
    Associação Nacional dos Fabricantes de Papel e Celulose (ANFPC) (1995), Annual Report.Google Scholar
  15. 15.
    Bjorkman, A. (1956), Svensk Papperstidn 59, 477–485.Google Scholar
  16. 16.
    Pew, J. C. (1957), Tappi J. 40, 553–558.Google Scholar
  17. 17.
    Nord, F. F. and Schubert, W. J. (1951), Holzforschung 5, 1.CrossRefGoogle Scholar
  18. 18.
    Nord, F. F. and Schubert, W. J. (1957), Tappi J. 40, 285.Google Scholar
  19. 19.
    Azis, S. and Sarkanen, K. V. (1989), Tappi J. 72, 169–175.Google Scholar
  20. 20.
    Silva, F. T. (1995), PhD thesis, UNICAMP, Campinas, Brazil.Google Scholar
  21. 21.
    Ferraz, A., Souza, J. A., Silva, F. T., Gonçalves, A. R., Bruns, R. E., and Cotrim, A. R. (1997), J. Agric. Food Chem. 45, 1001–1005.CrossRefGoogle Scholar
  22. 22.
    Cho, C. S., Park, K. P., Lee, K. C., and Kale, D. D. (1990), Indian J. Technol. 28, 24–26.Google Scholar
  23. 23.
    Riggle, B. N. and Penner D. (1988), Weed Sci. 36, 131–136.Google Scholar
  24. 24.
    Riggle, B. N. and Penner D. (1987), Weed Sci. 35, 243–246.Google Scholar
  25. 25.
    Riggle, B. N. and Penner D. (1992), J. Agric. Food Chem. 40, 1710–1712.CrossRefGoogle Scholar
  26. 26.
    Lewis, D. H. and Cowsar, D. R. (1997), in Controlled Release Pesticides, Sher, B. H. and Gould, R. F., eds., ACS Symposium Series 53, American Chemical Society, Washington, DC, pp. 1–15.Google Scholar
  27. 27.
    Collins, R. L. (1983), in Controlled-Release Technology: Bioengineering Aspects, Das, K. G., ed., John Wiley & Sons, New York, pp. 15–22.Google Scholar
  28. 28.
    Schwartz, J. B., Simonelli, A. P., and Higuchi, W. I. (1968), J. Pharm. Sci. 57, 274–277.CrossRefGoogle Scholar
  29. 29.
    Higuchi, T. (1961), J. Pharm. Sci. 50, 874–876.CrossRefGoogle Scholar
  30. 30.
    Simonelli, A. P. and Higuchi, W. I. (1966), J. Pharm. Sci. 55, 1230–1234.CrossRefGoogle Scholar
  31. 31.
    Lapidus, H. and Lordi, N. G. (1966), J. Pharm. Sci. 55, 841–843.Google Scholar
  32. 32.
    Papadokostaki, K. G. and Petropoulos, J. H. (1998), J. Controlled Release 54, 251–264.CrossRefGoogle Scholar
  33. 33.
    Farhadieh, B., Borodkin, S., and Budenhagen, J. D. (1971), J. Pharm. Sci. 60, 212–215.CrossRefGoogle Scholar
  34. 34.
    Farhadieh, B., Borodkin, S., and Budenhagen, J. D. (1971), J. Pharm. Sci. 60, 209–212.CrossRefGoogle Scholar
  35. 35.
    Siegel, R. A. (1989), in Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., ed., VCH Publishers, New York, pp. 1–9.Google Scholar
  36. 36.
    Zeoli, L. T. and Kydonieus, A. F. (1983), in Controlled-Release Technology: Bioengineering Aspects, Das, K. G., ed., John Wiley & Sons, New York, pp. 61–120.Google Scholar
  37. 37.
    Higuchi, T. (1963), J.. Pharm. Sci. 52, 1145–1149.CrossRefGoogle Scholar
  38. 38.
    Miller, E. S. and Peppas, N. A. (1983), Chem. Eng. Commun. 22, 303.CrossRefGoogle Scholar
  39. 39.
    Jury, W. A. and Ghodrati, M. (1989), in Reactions and Movement of Organic Chemicals in Soils, vol. 11, Sawhney, B. L. and Brown, K., eds., SSSA Special Publication Number 22, Soil Society of America and American Society of Agronomy, Madison, WI, pp. 271–304.Google Scholar
  40. 40.
    Weber, J. B. and Miller, C. T. (1989), in Reactions and Movement of Organic Chemicals in Soils, Sawhney, B. L. and Brown, K., eds., vol. 12, SSSA Special Publication Number 22, Soil Society of America and American Society of Agronomy,Madison, WI, pp.305-Google Scholar
  41. 41.
    Harper, L. A., White, A. W., Jr., Bruce, R. R., Thomas, A. W., and Leonard, R. A. (1976), J. Environ. Quality 5, 236–242.CrossRefGoogle Scholar
  42. 42.
    Glotfelty, D. E. and Schomburg, C. J. (1989), in Reactions and Movement of Organic Chemicals in Soils, Sawhney, B. L. and Brown, K., eds., vol. 7, SSSA Special Publication Number 22, Soil Society of America and American Society of Agronomy, Madison, WI, pp. 181–207.Google Scholar
  43. 43.
    Hamaker, J. W. and Thompson (1972), in Organic Chemicals in the Soil Environment, Hamaker, J. W., ed., Marcel Dekker, New York, pp. 49–144.Google Scholar
  44. 44.
    Karickhoff, S. W., Brown, D. S., and Scott, T. A. (1979), Water Res. 13, 241–248.CrossRefGoogle Scholar
  45. 45.
    Valentine, R. L. (1986), in Vadose Zone Modeling of Organic Pollutants, Hern, S. M. and Meloncon, S., eds., Lewis Publ, Chelsea, MI, pp. 223–243.Google Scholar
  46. 46.
    Miller, G. C., Herbert, V. R., and Miller, W. W. (1989), in Reactions and Movement of Organic Chemicals in Soils, Sawhney, B. L. and Brown, K., eds., vol. 5, SSSA Special Publication Number 22, Soil Society of America and American Society of Agronomy, Madison, WI, pp. 99–110.Google Scholar
  47. 47.
    Mabey, W. and Mill, T. (1978), J. Phys. Chem. 7, 383–415.Google Scholar
  48. 48.
    Wolfe, N. L., Metwally, M. E.-S., and Moftah, A. E. (1989), in Reactions and Movement of Organic Chemicals in Soils, Sawhney, B. L. and Brown, K., eds., vol. 9, SSSA Special Publication Number 22, Soil Society of America and American Society of Agronomy, Madison, WI, pp. 29–241.Google Scholar
  49. 49.
    Hurle, K. and Walker, A. (1980), in Interactions Between Herbicides and the Soil, Hance, R. J., ed., Academic, New York, pp. 83–122.Google Scholar
  50. 50.
    Alexander, M. and Scow, K. M. (1989), in Reactions and Movement of Organic Chemicals in Soils, Sawhney, B. L. and Brown, K., eds., vol. 10, SSSA Special Publication Number 22, Soil Society of America and American Society of Agronomy, Madison, WI, pp. 243–269.Google Scholar
  51. 51.
    Hance, R. J. and McKone, C. E. (1971), Pesticide Sci. 2, 31–34.CrossRefGoogle Scholar
  52. 52.
    Hamaker, J. W., Youngson, C. R., and Goring, C. A. I. (1968), Weed Res. 8, 46–57.CrossRefGoogle Scholar
  53. 53.
    Hamaker, J. W. (1972), in Organic Chemistry in the Soil Environment, Goring, C. A. I. and Hamaker, J. W., eds., Marcel Dekker, New York, pp. 253–340.Google Scholar
  54. 54.
    Aiba, S., Humphrey, A., and Millis, N. (1979), Biochemical Engineering, 2nd ed., Academic, New York.Google Scholar
  55. 55.
    Bailey, J. E. and Ollis, D. F. (1986), Biochemical Engineering Fundamentals, 2nd ed., McGraw-Hill, New York.Google Scholar
  56. 56.
    Wang, D. I. C., Cooney, C. L., Demain, A. L., Dunnill, P., Humphrey, A., and Lilly, M. D. (1979), Fermentation and Enzyme Technology, John Wiley & Sons, New York.Google Scholar
  57. 57.
    Focht, D. D. and Shelton, D. (1987), Appl. Environ. Microbiol. 53, 1846–1849.Google Scholar
  58. 58.
    Ishida, Y., Imai, I., Miyagaki, T., and Kadota, H. (1982), Microbiol. Ecol. 8, 23–32.CrossRefGoogle Scholar
  59. 59.
    Lewis, D. L., Kollig, H. P., and Hall, T. L. (1983), Appl. Environ. Microbiol. 46, 146–151.Google Scholar
  60. 60.
    Jones, S. H. and Alexander, M. (1986), Appl. Environ. Microbiol. 51, 891–897.Google Scholar
  61. 61.
    Simkins, S. and Alexander, M. (1984), Appl. Environ. Microbiol. 47, 1299–1306.Google Scholar
  62. 62.
    Kunc, F. and Rybarova, J. (1983), Soil Biol. Biochem. 15, 141–144.CrossRefGoogle Scholar
  63. 63.
    Lees, H. and Quastel, J. H. (1946), Biochem. J. 40, 803–828.Google Scholar
  64. 64.
    Klecka, G. M. and Maier, W. J. (1985), Appl. Environ. Microbiol. 49, 46–53.Google Scholar
  65. 65.
    Rozich, A. F., Gaudy, A. F., Jr., and D’Adamo, P. C. (1985), Water Res. 19, 481–490.CrossRefGoogle Scholar
  66. 66.
    Bouchard, D. C., Lavy, T. L., and Lawson, E. R. (1985), J. Environ. Quality 14, 229–233.CrossRefGoogle Scholar
  67. 67.
    Montgomery, M., Yu, T. C., and Freed, V. H. (1972), Weed Res. 12, 31–36.CrossRefGoogle Scholar
  68. 68.
    Walker, A. and Brown, P. A. (1983), Bull. Environ. Contain. Toxicol. 30, 365–372.CrossRefGoogle Scholar
  69. 69.
    Meikle, R. W., Youngson, C. R., Hedlund, R. T., Goring, C. A. I., Hamaker, J. W., and Addington, W. W. (1973), Weed Sci. 21, 549–555.Google Scholar
  70. 70.
    Scow, K. M., Simkins, S., and Alexander, M. (1986), Appl. Environ. Microbiol. 51, 1028–1035.Google Scholar
  71. 71.
    Gonçalves, A. R., Garratt, J. A., Silva, F. T., Ferraz, A., Cotrim, A. R., Ferreira, A., and Wilkins, R. M. (1999), J. Agric. Food Chem., submitted.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Samuel C. Oliveira
    • 1
  • Félix M. Pereira
    • 1
  • André Ferraz
    • 1
  • Flávio T. Silva
    • 1
  • Adilson R. Gonçalves
    • 1
  1. 1.Departamento de BiotecnologiaFaculdade de Engenharia Química de LorenaLorenaBrazil

Personalised recommendations