Salinity-Regulated Replication of the Endogenous Plasmid pSY10 from the Marine Cyanobacterium Synechococcus sp.

  • Haruko Takeyama
  • Hideki Nakayama
  • Tadashi Matsunaga
Chapter
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

The endogenous plasmid pSY10 in the marine cyanobacterium Synechococcus sp. NKBG042902 is maintained at a high copy number when cells are grown in seawater and at a low copy number when cultured in freshwater. The mechanism of salinity-regulated replication of this plasmid was investigated. Transcription of repA was depressed under freshwater, which was accompanied by a low copy number of pSY10 and the appearance of a new protein that was expressed only in cells cultured in freshwater. This protein was observed to bind to putative repA promoters (Prep1 and Prep2) on pSY10. Moreover, this protein was observed only in Synechococcus sp. NKBG042902. The data suggest that this protein(s) regulates repA transcription in pSY10, stress responsive and encoded by the host chromosome.

Index Entries

Plasmid pSY10 replication marine cyanobacterium Synechococcus sp. salinity stress repA gene band shift assay copy number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hagemann, M., Richter, S., and Zuther, E. (1996), Arch. Microbiol. 166, 83–91.CrossRefGoogle Scholar
  2. 2.
    Joset, F., Jeanjean, R., and Hagemann, M. (1996), Physiologia Plantarum 96, 738–744.CrossRefGoogle Scholar
  3. 3.
    Iwawno, M. (1995), Plant Cell Physiol. 36, 1297–1301.Google Scholar
  4. 4.
    Takeyama, H., Burgess, J. G., Sudo, H., Sode, K., and Matsunaga, T. (1991), FEMS Microbiol. Lett. 90, 95–98.CrossRefGoogle Scholar
  5. 5.
    Kawaguchi, R., Nagaoka, T., Burgess, J. G., Takeyama, H., and Matsunaga, T. (1994), Plasmid 32, 245–253.CrossRefGoogle Scholar
  6. 6.
    Xia, G., Manen, D., Yu, Y., and Caro, L. (1993), J. Bacterial. 175, 4165–4175.Google Scholar
  7. 7.
    Bramhill, D. and Kornberg, A. (1988), Cell 54, 915–918.CrossRefGoogle Scholar
  8. 8.
    Del Solar, G., Giraldo, R., Ruiz-Echevarria, M. J., Espinosa, M., and Diaz-Orejas, R. (1998), Microbiol. Mol. Biol. Rev. 62, 434–464.Google Scholar
  9. 9.
    Takeyama, H. and Nakayama, H. (1998), in New Development in Marine Biotechnology, Le Gal, Y. and Halvorson, H. O., eds., Plenum, New York, pp. 255, 256.Google Scholar
  10. 10.
    Takeyama, H., Takeda, D., Yazawa, K., Yamada, A., and Matsunaga, T. (1997), Microbiology 143, 2725–2731.CrossRefGoogle Scholar
  11. 11.
    Sode, K., Tatara, M., Takeyama, H., Burgess, J. G., and Matsunaga, T. (1992), Appl. Microbiol. Biotechnol. 37, 369–373.CrossRefGoogle Scholar
  12. 12.
    Matsunaga, T., Takeyama, H., and Nakamura, N. (1990), Appl. Biochem. Biotechnol. 24-25, 151–160.CrossRefGoogle Scholar
  13. 13.
    Brosius, J. (1988), in Vectors, Rodriquez, R. I. and Denhardt, D. T., eds., Butterworth, Boston, pp. 205–225.Google Scholar
  14. 14.
    Hasunuma, K. and Sekiguchi, M. (1977), Mol. Gen. Genetics 154, 225–230.CrossRefGoogle Scholar
  15. 15.
    Highlander, S. K. and Novick, R. P. (1990), Plasmid 23, 1–15.CrossRefGoogle Scholar
  16. 16.
    Wang, P. Z., Projan, S. J., Henriquez, V., and Novick, R. P. (1992), J. Mol. Biol. 223, 145–158.CrossRefGoogle Scholar
  17. 17.
    Zhang, Q., Soares de Oliveira, S., Colangeli, R., and Gennaro, M. L. (1997), J. Bacteriol. 179, 684–688.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Haruko Takeyama
    • 1
  • Hideki Nakayama
    • 1
  • Tadashi Matsunaga
    • 1
  1. 1.Department of BiotechnologyTokyo University of Agriculture and TechnologyKoganei, TokyoJapan

Personalised recommendations