Characterization of a High-Productivity Recombinant Strain of Zymomonas mobilis for Ethanol Production from Glucose/Xylose Mixtures

  • Eva L. Joachimsthal
  • Peter L. Rogers
Part of the Applied Biochemistry and Biotechnology book series (ABAB)


The fermentation characteristics of a recombinant strain of Zymomonas mobilis ZM4(pZB5) capable of converting both glucose and xylose to ethanol have been further investigated. Previous studies have shown that the strain ZM4(pZB5) was capable of converting a mixture of 65 g/L of glucose and 65 g/L of xylose to 62 g/L of ethanol in 48 h with an overall yield of 0.46 g/g. Higher sugar concentrations (e.g., 75/75 g/L) resulted in incomplete xylose utilization (80 h). In the present study, further kinetic evaluations at high sugar levels are reported. Acetate inhibition studies and evaluation of temperature and pH effects indicated increased maximum specific uptake rates of glucose and xylose under stressed conditions with increased metabolic uncoupling. A high-productivity system was developed that involved a membrane bioreactor with cell recycling. At sugar concentrations of approx 50/50 g/L of glucose/xylose, an ethanol concentration of 50 g/L, an ethanol productivity of approx 5 g/(L.h), and a yield (γp/S) of 0.50 g/g were achieved. Decreases in cell viability were found in this system after attainment of an initial steady state (40–60 h); a slow bleed of concentrated cells may be required to overcome this problem.

Index Entries

Recombinant Zymomonas mobilis xylose fermentation lignocellulosic hydrolysates inhibition ethanol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995), Science 267, 240–243.CrossRefGoogle Scholar
  2. 2.
    Joachimsthal, E. L., Haggett, K. D., and Rogers, P. L. (1999), Appl. Biochem. Biotechnol. 77-79, 147–157.CrossRefGoogle Scholar
  3. 3.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1999), Appl. Biochem. Biotechnol. 77-79, 191–204.CrossRefGoogle Scholar
  4. 4.
    Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Hatzis, C. (1997), Appl. Biochem. Biotechnol. 67, 185–198.CrossRefGoogle Scholar
  5. 5.
    Joachimsthal, E. L., Haggett, K. D., Jang, J.-H., and Rogers, P. L. (1998), Biotechnol. Lett. 20(2), 137–142.CrossRefGoogle Scholar
  6. 6.
    Sreekumar, O. and Basappa, S. C. (1991), Biotechnol. Lett. 13(5), 365–370.CrossRefGoogle Scholar
  7. 7.
    Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982), Adv. Biochem. Eng. 23, 37–84.Google Scholar
  8. 8.
    Kim, I. S., Barrow, K. D., and Rogers, P. L. (2000), Appl. Biochem. Biotechnol. 84-86, 357–370.CrossRefGoogle Scholar
  9. 9.
    DiMarco, A. A. and Romano, A. H. (1985), Appl. Environ. Microbiol. 49(1), 151–157.Google Scholar
  10. 10.
    Lee, K. J., Skotnicki, M. L., Tribe, D. E., and Rogers, P. L. (1981), Biotechnol. Lett. 3(6), 291–296.CrossRefGoogle Scholar
  11. 11.
    Deanda, K., Zhang, M., Eddy, C., and Picataggio, S. (1996), Appl. Environ. Microbiol. 62, 4465–4470.Google Scholar
  12. 12.
    Slininger, P. J., Bothast, R. J., Ladisch, M. R., and Okos, M. R. (1990), Biotechnol. Bioeng. 35, 727–731.CrossRefGoogle Scholar
  13. 13.
    Feldmann, S. D., Sahm, H. S., and Sprenger, G. A. (1992), Appl. Microbiol. Biotechnol. 38, 354–361.CrossRefGoogle Scholar
  14. 14.
    de Graaf, A. A., Striegel, K., Wittig, R. M., Laufer, B., Schmidt, G., Wiechert, W., Sprenger, G. A., and Sahm, H. (1999), Arch. Microbiol. 171(6), 371–385.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Eva L. Joachimsthal
    • 1
  • Peter L. Rogers
    • 1
  1. 1.Department of BiotechnologyUniversity of New South WalesSydneyAustralia

Personalised recommendations