Fourier Transform Infrared Quantification of Sugars in Pretreated Biomass Liquors

  • Melvin P. Tucker
  • Ragheed K. Mitri
  • Fannie P. Eddy
  • Q. A. Nguyen
  • Lynn M. Gedvilas
  • John D. Webb
Part of the Applied Biochemistry and Biotechnology book series (ABAB)


The process of converting renewable lignocellulosic biomass to ethanol requires a number of steps, and pretreatment is one of the most important. Pretreatment usually involves a hydrolysis of the easily hydrolyzed hemicellulosic component of biomass using some form of thermal/chemical/mechanical action that results in a product that can be further hydrolyzed by cellulase enzymes (the cellulosic portion). The sugars produced can then be fermented to ethanol by fermentative microorganisms. If the pretreatment step is not severe enough, the resultant residue is not as easily hydrolyzed by the cellulase enzyme. More severe pretreatment conditions result in the production of degradation products that are toxic to the fermentative microorganism. In this article, we report the quantitative analysis of glucose, mannose, xylose, and acetic acid using Fourier transform infrared (FTIR) spectroscopy on liquors from dilute-acid-pretreated softwood and hardwood slurries. Comparison of FTIR and high-performance liquid chromatography quantitative analyses of these liquors are reported. Recent developments in infrared probe technology has enabled the rapid quantification of these sugars by FTIR spectroscopy in the batch reactor during optimization of the pretreatment conditions, or interfaced to the computer controlling a continuous reactor for on-line monitoring and control.

Index Entries

Fourier transform infrared biomass hardwood softwood pretreatment acid hydrolysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nguyen, Q. A., Tucker, M. P., Keller, F. A., Beaty, D. A., Connors, K. M., and Eddy, F. P. (1999), Appl. Biochem. Biotechnol. 77-79, 133–142.CrossRefGoogle Scholar
  2. 2.
    Sjolander, N. O., Langlykke, A. F., and Peterson, W. H. (1938), Ind. Eng. Chem. 30(11), 1251–1255.CrossRefGoogle Scholar
  3. 3.
    Block, S. S. (1944), J. Bacteriol. 47, 213.Google Scholar
  4. 4.
    Griffiths, R. P. (1975), Chemical Infrared Fourier Transform Spectroscopy, John Wiley, New York.Google Scholar
  5. 5.
    Krishnan, K. and Ferraro, J. R. (1982), in Fourier Transform Infrared Spectroscopy, Krishnan, K. and Ferrraro, J. R., eds., vol. 3, Academic, New York, p. 203.Google Scholar
  6. 6.
    Doyle, W. M. (1990), Appl Spectros. 44, 50.CrossRefGoogle Scholar
  7. 7.
    Harrick, N. J. (1967), Internal Reflection Spectroscopy, John Wiley, New York.Google Scholar
  8. 8.
    Kuehl, D. and Crocombe, R. (1984), Appl. Spectros. 38(6), 907–909.CrossRefGoogle Scholar
  9. 9.
    Faix, O. (1988), Mikrochim. Acta 1(6), 21–25.CrossRefGoogle Scholar
  10. 10.
    Milosevic, M., Sting, D., and Rein, A. (1995), Spectroscopy 10(4), 44–49.Google Scholar
  11. 11.
    Schultz, T.P., Templeton, M.C., and McGinnis, G.D. (1985), Anal. Chem. 57(14), 2867–2869.CrossRefGoogle Scholar
  12. 12.
    Grandmaison, J. L, Thibault, J., Kaliaguine, S., and Chantai, P. D. (1987), Anal. Chem. 59(17), 2153–2157.CrossRefGoogle Scholar
  13. 13.
    Faix, O. and Bottcher, J. H. (1992), Holz Als Roh-Und Werkstoff 40(6), 221–226.CrossRefGoogle Scholar
  14. 14.
    Pandey, K. K. (1999), J. Appl. Polymer Sci. 71, 1969–1975.CrossRefGoogle Scholar
  15. 15.
    Zavarin, E., Jones, S. J., and Cool, L. G. (1990), J. Wood Chem. Technol. 10(4), 495–513.CrossRefGoogle Scholar
  16. 16.
    Faix, O. and Bottcher, J. H. (1993), Holzforschung 47, 45–49.CrossRefGoogle Scholar
  17. 17.
    Rodrigues, J., Faix, O., and Pereira, H. (1998), Holzforschung 52, 46–50.CrossRefGoogle Scholar
  18. 18.
    Duran, N. and Angelo, R. (1998), Appl. Spectros. Rev. 33(3), 219–236.CrossRefGoogle Scholar
  19. 19.
    Heitz, M., Rubio, M., Wu, G., and Khorami, J. (1995), Anales De Quimica 91S, 685–689.Google Scholar
  20. 20.
    Schultz, T. P. and Glasser, W. G. (1986), Holzforschung 40, 37–44.CrossRefGoogle Scholar
  21. 21.
    Leonard, R. H. and Hajny, G. J. (1945), Ind. Eng. Chem. 37(4), 390–395.CrossRefGoogle Scholar
  22. 22.
    Partansky, A. (1940), U. S. Patent 2, 203, 360.Google Scholar
  23. 23.
    Nguyen, Q. A., Dickow, J. H., Duff, B. W., Farmer, J. D., Glassner, D. A., Ibsen, K. N., Ruth, M. F., Schell, D. J., Thompson, I. B., and Tucker, M. P. (1997), Bioresour. Technol. 58, 189–196.CrossRefGoogle Scholar
  24. 24.
    Tucker, M. P., Farmer, J. D., Keller, F. A., Schell, D. J., and Nguyen, Q. A. (1998), Appl. Biochem. Biotechnol. 70-72, 25–35.CrossRefGoogle Scholar
  25. 25.
    Nguyen, Q. A., Keller, F. A., Tucker, M. P., Lombard, C. K., Jenkins, B. M., Yomogida, D., and Tiangco, V. M. (1999), Appl. Biochem. Biotechnol. 77-79, 455–472.CrossRefGoogle Scholar
  26. 26.
    Krull, I. and Swartz, M. (1997), LC:GC 15(6), 534–538.Google Scholar
  27. 27.
    Bouchard, J., Abatzoglou, N., Chornet, E., and Overend, R. P. (1989), Wood Sci. Technol. 23, 343–355.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Melvin P. Tucker
    • 1
  • Ragheed K. Mitri
    • 2
  • Fannie P. Eddy
    • 1
  • Q. A. Nguyen
    • 1
  • Lynn M. Gedvilas
    • 1
  • John D. Webb
    • 1
  1. 1.National Renewable Energy LaboratoryBiotechnology Center for Fuels and ChemicalsGoldenUSA
  2. 2.Department of ChemistryUniversity of DenverDenverUSA

Personalised recommendations