Skip to main content

When Can One Finite Monoid Simulate Another

  • Conference paper
Algorithmic Problems in Groups and Semigroups

Part of the book series: Trends in Mathematics ((TM))

Abstract

Let M and N be finite monoids. We want to use N somehow as a computational device that reads a sequence of inputs from M and outputs the product, in M, of this sequence. We ask what relation M must have to N for this to be possible; that is, when can N simulate M?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai, El formulae on finite structures,Ann. PureAppl. Logic, 24 (1983), 1–48.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Allender, A note on the power of threshold circuits, in Proceedings of the 30th IEEE FOCS, IEEE Computer Society Press, Los Alamitos, CA, 1989, 580–584.

    Google Scholar 

  3. E. Allender and U. Hertrampf, Depth reduction for circuits of unbounded fan-in, Inform. Comput., 112 (1994), 217–238.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Mix Barrington, Bounded-width polynomial-size branching programs recognize exactly those languages in NC 1, J. Comput. System Sci., 38 (1989), 150–164.

    Article  MathSciNet  Google Scholar 

  5. D. Mix Barrington and H. Straubing, Superlinear lower bounds for bounded-width branching programs, J. Comput. System Sci., 50 (1995), 374–381.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Mix Barrington, H. Straubing, and D. Thérien, Nonuniform automata over groups, Inform. Comput., 89 (1990), 109–132.

    Article  MATH  Google Scholar 

  7. D. Mix Barrington and D. Thérien, Finite monoids and the Fine structure of NC I, J. Assoc. Comput. Mach., 35 (1988), 941–952.

    Article  MathSciNet  Google Scholar 

  8. P. Beame, S. Cook, and J. Hoover, Log-depth circuits for division and related problems, SIAM J. Comput., 15 (1986), 994–1003.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Chandra, L. Stockmeyer, and U. Vishkin, Constant-depth reducibility, SIAM J. Comput., 13 (1984), 423–439.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Eilenberg, Automata,Languages and Machines, vol. B Academic Press, New York, 1976.

    Google Scholar 

  11. M. Furst, J. Saxe, and M. Sipser, Parity, circuits, and the polynomial time hierarchy, J. Math. Systems Theory, 17 (1984), 13–27.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Hastad, Almost optimal lower bounds for small-depth circuits, in Proceedings of the 18th ACM STOC, Association for Computing Machinery, New York, 1986, 6–20.

    Google Scholar 

  13. A. Maciel, P. Péladeau, and D. Thérien, Programs over semigroups of dot-depth one, preprint, 1996.

    Google Scholar 

  14. W. Maurer and J. Rhodes, A property of finite simple non-Abelian groups, Proc. Amer. Math. Soc., 16 (1965), 552–554.

    Article  MathSciNet  MATH  Google Scholar 

  15. J.E. Pin, Varieties of Formal Languages, Plenum, London, 1986.

    Book  MATH  Google Scholar 

  16. M.P. Schützenberger, On finite monoids having only trivial subgroups, Inform. Control, 8 (1965), 190–194.

    Article  MATH  Google Scholar 

  17. R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity, in Proceedings of the 19th ACM STOC, Association for Computing Machinery, New York, 1987, 77–82.

    Google Scholar 

  18. H. Straubing, Constant-depth periodic circuits, Internat. J. Algebra Comput., 1 (1991), 49–88.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Straubing, Finite Automata,Formal Languages, and Circuit Complexity, Birkhäuser, Boston, 1994.

    Google Scholar 

  20. H. Straubing, Languages defined with modular counting quantifiers, in Proceedings of the 15th STACS, Lecture Notes in Comput. Sci. 1373, Springer-Verlag, Berlin, 1998, 332–343.

    Google Scholar 

  21. S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput., 20 (1991), 865–877.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Yao, Separating the polynomial time hierarchy by oracles, in Proceedings of the 26th IEEE FOCS, IEEE Computer Society Press, Los Alamitos, CA, 1985, 1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this paper

Cite this paper

Straubing, H. (2000). When Can One Finite Monoid Simulate Another. In: Birget, JC., Margolis, S., Meakin, J., Sapir, M. (eds) Algorithmic Problems in Groups and Semigroups. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1388-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1388-8_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7126-0

  • Online ISBN: 978-1-4612-1388-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics