Syntactic and Global Semigroup Theory: A Synthesis Approach

  • Jorge Almeida
  • Benjamin Steinberg
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

This paper is the culmination of a series of work integrating syntactic and global semigroup theoretical approaches for the purpose of calculating semidirect products of pseudovarieties of semigroups. We introduce various abstract and algorithmic properties that a pseudovariety of semigroups might possibly satisfy. The main theorem states that given a finite collection of pseudovarieties, each satisfying certain properties of the sort alluded to above, any iterated semidirect product of these pseudovarieties is decidable. In particular, the pseudovariety G of finite groups satisfies these properties. J. Rhodes has announced a proof, in collaboration with J. McCammond, that the pseudovariety A of finite aperiodic semigroups satisfies these properties as well. Thus, our main theorem would imply the decidability of the complexity of a finite semigroup. Their work, in light of our main theorem, would imply the decidability of the complexity of a finite semigroup.

Keywords

Resid Verse Tame Culmination Teorema 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Albert, R. Baldinger, and J. Rhodes, The identity problem for finite semi-groups (the undecidability of), J. Symbolic Logic, 57 (1992), 179–192.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    J. Almeida, Implicit operations on finite J-trivial semigroups and a conjecture of I. Simon, J. PureAppl. Algebra, 69 (1990), 205–218.MathSciNetMATHGoogle Scholar
  3. [3]
    J. Almeida, Finite Semigroups and Universal Algebra, World Scientific, Sin-gapore, 1995 (English translation).Google Scholar
  4. [4]
    J. Almeida, Hyperdecidable pseudovarieties and the calculation of semidirect products, Internat. J. Algebra Comput., 9 (1999), 241–261.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    J. Almeida, On hyperdecidable pseudovarieties of simple semigroups, Inter- nat. J. Algebra Comput., 1998, to appear.Google Scholar
  6. [6]
    J. Almeida, On a problem of Brzozowski and Fich, in Semigroups and Appli- cations, J. M. Howie and N. Ruskuc, eds., World Scientific, Singapore, 1998, 1–17.Google Scholar
  7. [7]
    J. Almeida and A. Azevedo, Globals of pseudovarieties of commutative semi-groups: The finite basis problem, decidability, and gaps, Technical Report CMUP 1999–10, University of Porto, Porto, Portugal, 1999.Google Scholar
  8. [8]
    J. Almeida, A. Azevedo, and L. Teixeira, On finitely based pseudovarieties of the forms V * D and V * Dn J. PureAppl. Algebra,1998, to appear.Google Scholar
  9. [9]
    J. Almeida, A. Azevedo, and M. Zeitoun, Pseudovariety joins involving,trivial semigroups and completely regular semigroups, Internat. J. Algebra Comput., 9 (1999), 99–112.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    J. Almeida and A. Escada, On the equation V * G = εV, Technical Report CMUP 98–6, University of Porto, Porto, Portugal, 1998.Google Scholar
  11. [11]
    J. Almeida and P. V. Silva, SC-hyperdecidability of R, Theoret. Comput. Sci., 1998, to appear.Google Scholar
  12. [12]
    J. Almeida and B. Steinberg, Iterated semidirect products with applications to complexity, Proc. London Math. Soc., 1998, to appear.Google Scholar
  13. [13]
    J. Almeida and P. Weil, Relatively free profinite monoids: An introduction and examples, in Semigroups, Formal Languages and Groups, vol. 466, J. B. Fountain, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995, 73–117.CrossRefGoogle Scholar
  14. [14]
    J. Almeida and P. Weil, Free profinite semigroups over semidirect products, Russian Math. (Iz. VUZ), 39 (1995), 1–27.MathSciNetMATHGoogle Scholar
  15. [15]
    J. Almeida and P. Weil, Profinite categories and semidirect products, J. Pure AppL Alge-bra,123 (1998), 1–50.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    J. Almeida and M. Zeitoun, The pseudovariety J is hyperdecidable, Theoret. Inform. Appl., 31 (1997), 457–482.MathSciNetMATHGoogle Scholar
  17. [17]
    C. J. Ash, Inevitable graphs: A proof of the type II conjecture and some related decision procedures, Internat. J. Algebra Comput., 1 (1991), 127–146.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    J. C. Birget and J. Rhodes, Almost finite expansions of arbitrary semigroups, J. PureAppl. Algebra, 32 (1984), 127–146.MathSciNetGoogle Scholar
  19. [19]
    S. Burris and H. P. SankappanavarA Course in Universal Algebra, Springer-Verlag, New York, 1981.MATHCrossRefGoogle Scholar
  20. [20]
    M. Delgado, Teorema do tipo II e hiperdecidibilade de pseudovariedades de grupos, Ph.D. thesis, University of Porto, Porto, Portugal, 1997.Google Scholar
  21. [21]
    S. Eilenberg, Automata, Languages and Machines, Vol. B, Academic Press, New York, 1976.Google Scholar
  22. [22]
    T. Evans, Some connections between residual finiteness, finite embeddability and the word problem, J. London Math. Soc., 1 (1969), 399–403.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    M. D. Fried and M. Jarden, Field Arithmetic, Springer-Verlag, Berlin, 1986.MATHGoogle Scholar
  24. [24]
    K. Henckell, Pointlike sets: The finest aperiodic cover of a finite semigroup, J. PureAppl. Algebra, 55 (1988), 85–126.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    K. Henckell, Product expansions, J. PureAppl. Algebra, 101 (1995), 157–170.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    K. Henckell, S. Margolis, J.-E. Pin, and J. Rhodes, Ash’s type II theorem, profinite topology and Malcev products, part I, Internat. J. Algebra Comput., 1 (1991), 411–436.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    K. Krohn and J. Rhodes, Algebraic theory of machines I: Prime decomposition theorem for finite semigroups and machines, Trans. Amer. Math. Soc., 116 (1965), 450–464.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    P. R. Jones, Profinite categories, implicit operations, and pseudovarieties of categories, J. Pure Appl. Algebra, 109 (1995), 61–95.CrossRefGoogle Scholar
  29. [29]
    S. MacLane, Categories for the Working Mathematician, Springer-Verlag, New York, 1971.Google Scholar
  30. [30]
    J. McCammond, The solution to the word problem for the relatively free semigroups satisfying T° = T a+b with a ≥ 6, Internat. J. Algebra Comput., 1 (1991), 1–32.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    J.-E. Pin, Varieties of Formal Languages, Plenum, New York, 1986.MATHCrossRefGoogle Scholar
  32. [32]
    J. Reiterman The Birkhoff theorem for finite algebrasAlgebra Universalis, 14 (1982), 1–10.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    J. Rhodes, Kernel systems: A global study of homomorphisms on finite semi-groups, J. Algebra, 49 (1977), 1–45.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    J. Rhodes, Undecidability, automata and pseudovarieties of finite semigroups, Internat. J. Algebra Comput., 9 (1999), 455–473.MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    J. Rhodes and B. Steinberg, Pointlikes sets, hyperdecidability, and the identity problem for finite semigroups, Internat. J. Algebra Comput., 9 (1999), 475–481.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    L. Ribes and P. A. Zalesskii, On the profinite topology on a free group, Bull. London Math. Soc., 25 (1993), 37–43.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    L. Ribes and P. A. Zalesskii, The pro-p topology of a free group and algorithmic problems in semigroups, Internat. J. Algebra Comput., 4 (1994), 359–374.MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    I. Simon, Hierarchies of events of dot-depth one, Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada, 1972.Google Scholar
  39. [39]
    B. Steinberg, On pointlike sets and joins of pseudovarieties, Internat. J. Algebra Comput., 8 (1998), 203–231.MathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    B. Steinberg, On algorithmic problems for joins of pseudovarieties, Semigroup Forum, 1998, to appear.Google Scholar
  41. [41]
    B. Steinberg, Semidirect products of categories and applications, J. Pure and Applied Algebra, 142 (1999), 153–182.MathSciNetMATHCrossRefGoogle Scholar
  42. [42]
    B. Steinberg, Inevitable graphs and profinite topologies: Some solutions to al-gorithmic problems in monoid and automata theory stemming from group theory, Internat. J. Algebra Comput., 1998, to appear.Google Scholar
  43. [43]
    B. Steinberg, A delay theorem for pointlikes, Semigroup Forum, 1999, to appear.Google Scholar
  44. [44]
    B. Tilson, Categories as algebra: An essential ingredient in the theory of monoids, J. Pure Appl. Algebra, 48 (1987), 83–198.MathSciNetMATHCrossRefGoogle Scholar
  45. [45]
    P. G. Trotter and M. V. Volkov, The finite basis problem in the pseudovariety joins of aperiodic semigroups with groups, Semigroup Forum, 52 (1996), 83–91.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Jorge Almeida
    • 1
  • Benjamin Steinberg
    • 2
  1. 1.Faculdade de CiênciasUniversidade do Porto P. Gomes TeixeiraPortoPortugal
  2. 2.Department of MathematicsUniversity of PortoPortoPortugal

Personalised recommendations