Some Models and Mathematical Results for Reliability of Systems of Components

  • Christiane Cocozza-Thivent
Part of the Statistics for Industry and Technology book series (SIT)


We discuss the modelization of systems of components and the associated reliability formulas which can be proved. We present some mathematical results which can be seen as validations of engineers’ practice. The exhibited tools are the renewal theory and martingale technics.

Keywords and phrases

System of components reliability formulas exponential approximation Vesely failure rate renewal theory Markov process semi-Markov process martingales interacting systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barlow, R.E. and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing: Probability Models, Holt, Rinehart and Winston, International Series in Decision Processes.Google Scholar
  2. 2.
    Barlow, R.E. and Proschan, F. (1976). Theory for Maintained Systems: Distribution of Time to First Failure, Mathematics of Operations Research, 1, 32–42.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bon, J.L. (1994). Méthodes mathématiques en théorie de la fiabilité, Masson, Paris.Google Scholar
  4. 4.
    Bon, J.L. and Bouissou, M. (1992). Fiabilité des grands systèmes séquentiels: résultats théoriques et applications dans le cadre du logiciel GSI, Rev. Stat. Appli., 40, 2, 45–54.Google Scholar
  5. 5.
    Bon, J.L. and Kalashnikov, V. (1999). Bounds for geometric sums used for evaluation of reliability of regenerative models, J. Math. Sciences, 93, 4, 486–500.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Çinlar, E. (1975). Introduction to stochastic processes, Prentice-Hall.Google Scholar
  7. 7.
    Cocozza-Thivent, C. (1997). Processus stochastiques et fiabilité des systèmes, Collection Mathéet Applications, n° 28, Springer-Verlag, Heidelberg.Google Scholar
  8. 8.
    Cocozza-Thivent, C. and Kalashnikov V. (1996). The Failure Rate in Reliability: Approximations and bounds, J. Appli. Math. Stoch. Anal, 9, IV, 497–530.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cocozza-Thivent, C. and Kalashnikov, V. (1997). The Failure Rate in Reliability: Numerical treatment, J. Appli. Math. Stock. Anal, 10, 1, 21–45.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cocozza-Thivent, C. and Roussignol, M. (1995). Techniques de couplage en fiabilité, Ann. Inst. Henri Poincaré, Probab. Stat. 31, 1, 119–141.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cocozza-Thivent, C. and Roussignol, M. (1997). Semi-Markov processes for reliability studies, ESAIM: Probability and Statistics, 1, 207–223.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Cocozza-Thivent, C. and Roussignol, M. A general framework for some asymptotic reliability formulas, In revision for Applied Probability.Google Scholar
  13. 13.
    Pamphile, P. (1996). Calculs de la fiabilité de grands systèmes hautement fiables, Thèse de doctorat. Université de Paris-Sud.Google Scholar
  14. 14.
    Ross, S.M. (1975). On the Calculation of Asymptotics System Reliability Characteristics, Reliability and Fault Tree Analysis, R.E. Barlow, J.B. Fussell and N. Singpurwalla editors, SIAM, Philadelphia.Google Scholar
  15. 15.
    Shurenkov, V.M. (1984). On the theory of Markov renewal, Th. Probab. Appl., 29, 247–265.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Christiane Cocozza-Thivent
    • 1
  1. 1.Université de Marne-la-ValléeFrance

Personalised recommendations