Unbiased Estimation in Reliability and Similar Problems

  • Mikhail Nikulin
  • Vassilly Voinov
Part of the Statistics for Industry and Technology book series (SIT)


Some problems related to an application of the unbiased estimators for sampling inspection, lifetime and reliability testing are discussed. Continuous and discrete, univariate and multivariate parametric probability models are considered.

Keywords and phrases

Unbiased estimation life distributions multivariate failure rates multivariate polynomial laws sampling inspection reliability and quality of products 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold B.C. (1975). Multivariate exponential distributions based on hierarchical succesive damage, J. Appl. Prob., 12, 142–147.zbMATHCrossRefGoogle Scholar
  2. 2.
    Aven T., Jensen U. (1999). Stochastic models in reliability, Springer-Verlag, New York.zbMATHCrossRefGoogle Scholar
  3. 3.
    Bakker D.M. (1990). Two nonparametric estimators of the survival function on bivariate right censored observations, Report BS-R9035, Centre for mathematics and computer science, Amsterdam.Google Scholar
  4. 4.
    Basu A.P. (1988). Multivariate exponential distributions and their applications in reliability, P.R. Krishnaiah and C.R. Rao (eds.), Handbook of Statistics, 7, 467–476.Google Scholar
  5. 5.
    Belyaev Yu.K. (1975). Probabilistic methods of sampling inspection, Nauka, Moscow (in Russian).Google Scholar
  6. 6.
    Block H.W., Basu A.P. (1974). A continuous bivariate exponential extension, JASA, 69, 1031–1037.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chandra S. and Owen D.B. (1975). On estimating the reliability of a component subject to several different stresses (strengths), Naval Res. Logist. Quart, 22, 31–39.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Downton F. (1973). The estimation of PY < X in the normal case, Technometrics, 15, 551–558.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Greenwood P., Nikulin M.S. (1996). A guide to chi-squared testing, John Wiley and Sons, New York.zbMATHGoogle Scholar
  10. 10.
    Gupta R.D., Gupta R.C. (1990). Estimation of Pr(ax > by) in the multivariate normal case, Statistics, 21, 91–97.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hoeffding W. (1983). Range-preserving unbiased estimators in the multinomial case, Inst.Statist.Mimeo Ser., 1515, 1–10.Google Scholar
  12. 12.
    Johnson R.A. (1988) Stress-strength models for reliabiliy, In: ”Handbook of Statistics”, P.R. Krishnan and C.R. Rao eds., Elsevier, 27–54.Google Scholar
  13. 13.
    Klein J.P., Basu A.P. (1985). Estimating reliability for bivariate exponential distributions, Sankhyá, 47B, 346–353.MathSciNetGoogle Scholar
  14. 14.
    Lieberman G.J., Resnikoff G.J. (1955). Sampling plans for inspection by variables, JASA, 50, 457–516.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lindley D.V., Singpurwalla N.D. (1986). Multivariate distributions for the life lengths of components of a system sharing a common environment, J. Appl. Prob., 23, 418–431.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Mazumdar M. (1983). Some estimates of reliability using interference theory, Naval Res. Logist. Quart., 17, 159–165.MathSciNetCrossRefGoogle Scholar
  17. 17.
    McCool J.I. (1991). Inference on PY < X in the Weibull case, Commun. Stat.-Simula., 20, 129–148.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Meeker W.Q., Escobar L.A. (1998). Statistical methods for reliability, John Wiley and Sons, New York.zbMATHGoogle Scholar
  19. 19.
    Neyman J., Scott E.L. (1960). Correction for bias introduced by a transformation of variables, Ann. Math. Stat., 31, 645–656.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nikulin M.S., Voinov V.G. (1994). Unbiased estimators of multivariate discrete distributions and chi-square goodness-of-fit test, Qüestiió, 17, 301–326.MathSciNetGoogle Scholar
  21. 21.
    Nikulin M.S., Novak M.M., Smirnov T.I., Voinov V.G. (1999). A probabilistic description of radioactive contamination, (to be published in Applied Radiation and Isotops).Google Scholar
  22. 22.
    Nikulin M.S., Price P.M., Turetayev D., Voinov V.G. (1999). An application of a multivariate discrete probability distribution for sampling survey analysis of supply chains, Technical Report N9905, University Victor Segalen Bordeaux 2, Bordeaux.Google Scholar
  23. 23.
    Panaretos J., Xekalaki E. (1986). On generalized binomial and multinomial distributions and their relation to generalized Poisson distributions, Ann. Inst Statist Math., 38A, 223–231.MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pugh E.L. (1963). The best estimate of reliability in the exponential case, Oper. Res., 11, 57–61.zbMATHCrossRefGoogle Scholar
  25. 25.
    Rohatgi V.K. (1989). Unbiased estimation of parametric functions in sampling from one-truncation parameter families, Austr. J. Stat., 31, 327–332.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Selvavel K. (1989). Unbiased estimation in sampling from two-truncation parameter families when both samples are type II censored, Commun. Stat.:Theory and Meth., 18, 3519–3531.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Unnikrishnan Nair N., Asha G. (1997). Some classes of multivariate life distributions in discrete time, J. of Multivar. Anal., 62, 181–189.zbMATHCrossRefGoogle Scholar
  28. 28.
    Van der Laan M.J. (1991). Analysis of Pruitt’s estimator of the bivariate survival function, Report Nr.648, University of Utrecht, The Netherlands.Google Scholar
  29. 29.
    Van der Laan M.J. (1994). Efficient and inefficient estimation in semipara-metric models, Doctor’s Thesis, Departament of Mathematics, Utrecht, The Netherlands, 189.Google Scholar
  30. 30.
    Voinov V.G. (1984). On unbiased estimation of P Y < X in the normal case, ap. Nauchn. Sem. L0MI, 136, 5–12 (in Russian).MathSciNetzbMATHGoogle Scholar
  31. 31.
    Voinov V.G., Nikulin M.S. (1993). Unbiased estimators and their applications. Vol.1: Univariate case, Dordrecht/Boston/London:KluwezbMATHGoogle Scholar
  32. 32.
    Voinov V.G., Nikulin M.S.(1995). Generating functions, problems of additive number theory and some statistical applications, Rev. Roumaine Math. Pures Appl., 40, 107–147MathSciNetzbMATHGoogle Scholar
  33. 33.
    Voinov V.G., Nikulin M.S. (1996). Unbiased estimators and their applications. Vol. 2: Multivariate case, Dordrecht/Boston/London:KluwerzbMATHGoogle Scholar
  34. 34.
    Voinov V.G., Nikulin M.S.(1997a). On a subset sum algorithm and its probabilistic and other applications. In.:Advances in combinatorial methods and applications to probability and statistics, Ed.:N. Balakrishnan, Birkhäuser, Boston, pp. 153–163.CrossRefGoogle Scholar
  35. 35.
    Voinov V.G., Nikulin M.S. (1997b). On some statistical and probability problems related to unipartite and multipartite partitions, Rev.Roumaine Math. Pures Appl., 52, 163–178.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Mikhail Nikulin
    • 1
  • Vassilly Voinov
    • 2
  1. 1.Victor Segalen Bordeaux 2 UniversityBordeauxFrance
  2. 2.Kazakhstan Institute of ManagementAlmatyKazakhstan

Personalised recommendations