Advertisement

Precedence Test and Maximal Precedence Test

  • N. Balakrishnan
  • R. Frattina
Part of the Statistics for Industry and Technology book series (SIT)

Abstract

In this paper, we first describe the precedence test for testing the hypothesis that two distribution functions are equal. We examine the power properties of this precedence test under a location shift between the two populations using Monte Carlo simulations, and compare them with those of Wilcoxon’s rank sum test. After noting that a ‘masking effect’ affects the performance of the precedence test, we next propose a maximal precedence test. We then examine the power properties of this maximal precedence test under a location shift, and compare them with those of the precedence test and Wilcoxon’s rank-sum test. Finally, we describe some possible extensions of the test procedures described here.

Keywords and phrases

Precedence test maximal precedence test Wilcoxon’s rank-sum test life-test level of significance power Monte Carlo simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1992). A First Course in Order Statistics, New York: John Wiley & Sons.zbMATHGoogle Scholar
  2. 2.
    Conover, W. J. (1971). Practical Nonparametric Statistics, Second edition, New York: John Wiley & Sons.Google Scholar
  3. 3.
    David, H. A. (1981). Order Statistics, Second edition, New York: John Wiley & Sons.zbMATHGoogle Scholar
  4. 4.
    Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous Uni-variate Distributions, Vol. 1, Second edition, New York: John Wiley & Sons.Google Scholar
  5. 5.
    Lehmann, E. L. (1975). Nonparametrics: Statistical Methods Based on Ranks, Toronto: McGraw-Hill.zbMATHGoogle Scholar
  6. 6.
    Nelson, L. S. (1963). Tables of a precedence life test, Technometrics, 5, 491–499.zbMATHCrossRefGoogle Scholar
  7. 7.
    Nelson, L. S. (1993). Tests on early failures — The precedence life test, Journal of Quality Technology, 25, 140–142.Google Scholar
  8. 8.
    Ross, S. (1995). A First Course in Probability, Fifth edition, New York: Macmillan.Google Scholar
  9. 9.
    Wilcoxon, F., Katti, S. K. and Wilcox, R. A. (1970). Selected Tables in Mathematical Statistics, Vol. 1, Chicago:Markham Publishing CompanGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • N. Balakrishnan
    • 1
  • R. Frattina
    • 1
  1. 1.McMaster UniversityHamiltonCanada

Personalised recommendations