Advertisement

Censored and Truncated Lifetime Data

  • Catherine Huber
Chapter
Part of the Statistics for Industry and Technology book series (SIT)

Abstract

Survival data are very often censored or/and truncated. Regression models have been developed for the independent and clustered cases, the most popular of which are semi-parametric. A review of their different scopes and aims is proposed, pointing out which part of the model is considered as nuisance and is usually involved in a baseline hazard rate.

Keywords and phrases

Survival data censoring truncation regression models dependency partial likelihood 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alioum, A. and Commenges, D. (1994). A Proportional Hazards Model for Arbitrarily Censored and Truncated Data. Biometrics., 52, 512–524.CrossRefGoogle Scholar
  2. 2.
    Andersen, P.K. and Gill, R.D. (1982). Cox’s regression model for counting processes: A large sample study. Ann. Statist., 10, 1100–1120.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Andersen, P.K., Borgan, O., Gill R. D., Keiding, N. (1993). Statistical Models based on Counting Processes, Springer Series in Statistics.Google Scholar
  4. 4.
    Bagdonavicius, V. and Nikulin, M. (1997). Some rank Tests for Multi-variate Censored Data. Advances in the Theory and Practice of Statistics, Volume in Honor of Samuel Kotz., J. Wiley and Sons, ed., 193–208.Google Scholar
  5. 5.
    Bagdonavicius, V. and Nikulin, M. (1997). Transfer functional and semi-parametric regression models. Biometrika, 84,2, 365–378.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bagdonavicius, V. and Nikulin, M. (1998). Additive and Multiplicative Semiparametric Models in Accelerated Life testing and Survival Analysis. Queen’s papers in Pure and Applied Mathematics, Queen’s university, Kingston, Ontario, Canada.Google Scholar
  7. 7.
    Bagdonavicius, V. and Nikulin, M. (1999a). Generalized Proportional Hazards Model Based on Modified Partial Likelihood. LIDA, 5, 323–344.MathSciNetGoogle Scholar
  8. 8.
    Bagdonavicius, V. and Nikulin, M. (1999b). On goodness of fit for the linear transformation and frailty models. Statistics and Probability Letters,6.Google Scholar
  9. 9.
    Bagdonavicius, V. and Nikulin, M. (1999c). On nonparametric estimation in accelerated experiments with step stresses. Statistics, 4.Google Scholar
  10. 10.
    Brémaud, P. et Jacod, J. (1977). Processus Ponctuels et Martingales: Résultats récents sur la modélisation et le filtrage, Adv. Applied Probabilities, 9, 362–416.zbMATHGoogle Scholar
  11. 11.
    Cai, J. and Prentice, R.L. (1995). Estimating equations for hazard ratio parameters based on correlated failure time data. Biometrika, 82, 151–164.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Commenges, D. and Gauzère, (1999). Non-parametric estimation in the model healthy, ill, dead. LIDA, 5, 4.Google Scholar
  13. 13.
    Chang, I.S. and Hsiung, C.A. (1994). Information and asymptotic efficiency in some generalized proportional hazards models for counting processes. The Annals of Statistics, 22, 3, 1275–1298.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Cheng S.C., Wei. L.J. and Ying Z. (1995). Analysis of transformation models with censored data. Biometrika, 82, 835–846.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Clayton, D.G. and Cuzick, J. (1985). Multivariate generalization of the proportional hazards model (with discussion). JRRS, A, 148, 82–117.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Clegg, L.X. Cai, J., and Sen, P.K. (1999). A Marginal Mixed Baseline Hazards Model for Multivariate Failure Time Data. Biometrics, 55, 3, 805–812.zbMATHCrossRefGoogle Scholar
  17. 17.
    Dabrowska, D.M. and Doksum K.A. (1988). Partial likelihood in transformation model with censored data. Scand. J. Statist., 15, 1–23.MathSciNetzbMATHGoogle Scholar
  18. 18.
    De Gruttola, V. and Lagakos, S.W. (1989). Analysis of doubly-censored data with application to AIDS. Biometrics, 45, 1–11.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Efron, B. and Petrozian, V. (1994). Survival Analysis of the Gamma Ray Burst Data asymptotic efficiency in some generalized proportional hazards models for counting processes. JASA, 88, 452–462.Google Scholar
  20. 20.
    Finkelstein, D.M., Moore, D.F., Shoenfeld, D.A. (1993). A Proportional Hazards Model for Truncated AIDS Data. Biometrics, 49, 731–740.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Frydman, H. (1994). A note on Nonparametric Estimation of the Distribution Function from Interval-censored and Truncated Observations. J.R.S.S., B, 56, 1, 71–74.MathSciNetzbMATHGoogle Scholar
  22. 22.
    Genest, C. and MacKay, R.J. (1986). Archimedian copulas and bivariate families with conbtinuous marginals. Canadian Journal of Statistics, 14, 145–159.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Genest, C. and Rivest, L.. (1993). Statistical inference procedure for bivariate archimedian copulas. JASA, 88, 1034–1043.MathSciNetzbMATHGoogle Scholar
  24. 24.
    Greenwood, P.E. and Wefelmeyer, W. (1993). On optimal estimating functions for partially specified counting process models, in Estimating functions pp. 147–160, Godambe V.P. ed, Oxford University Press.Google Scholar
  25. 25.
    Groenboom, P. and Wellner, J. (1993).Information Bounds and Nonparametric Maximum Likelihood Estimation, Birkhauser ed.Google Scholar
  26. 26.
    Gross, S. and Huber C. (1992). Regression models for truncated survival data.. Scandinavian Journal of Statistics. 19, 193–213.zbMATHGoogle Scholar
  27. 27.
    Gross, S. and Huber C. (1999). Hierarchical dependency models for multivariate failure time data with censoring.. Technical report. UniversitéParis V.Google Scholar
  28. 28.
    Gu, M.G. and Zhang C.-H., (1993). Asymptotic properties of self-consistent estimators based on doubly censored data. Ann. Statist., 21, 2, 611–624.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Hillali, Y. (1999). Estimation problems in arcimedian copula models. Thesis, INRIA, France.Google Scholar
  30. 30.
    Hougaard, P. (1987). Modeling multivariate survival. Scandinavian Journal of Statistics, 14, 291–304.MathSciNetzbMATHGoogle Scholar
  31. 31.
    Joly, P., Commenges, D., and Letenneur, L. (1997). A penalized likelihood approach for arbitrarily censored and truncated data: application to age-specific incidence dementia. Biometrics,??-?.Google Scholar
  32. 32.
    Lawless, J. (1982). Statistical Models and Methods for Survival data Analysis, J.Wiley and Sons, ed.Google Scholar
  33. 33.
    Leconte, E., Moreau, T., Lellouch, J. (1994). The two-sample problem with multivariate censored data: a new rank test family. Communications in Statistics-Simulations, 23, 4, 1061–1076.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Mahé, C. (1998). Stastical analysis of multivariate failure times data. Thèse, Université de Paris VI.Google Scholar
  35. 35.
    Meeker, W.Q. and Escobar L., (1998), Statistical Methods for Reliability Data, J.Wiley and Sons, ed.Google Scholar
  36. 36.
    Miller, R.G. Jr (1981). Survival analysis., Wiley Series in Probability and Mathematical Statistics: Applied probability and Statistics.Google Scholar
  37. 37.
    Murphy, S.A. (1995). Asymptotic theory for Frailty Model. Annals of Statistics, 23, 182–198.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Murphy, S.A., Rossini, A.J., Van der Vaart, A.W. “Maximum likelihood estimation in the proportional odds model”, (1997), JASA, v. 92,968–976.zbMATHGoogle Scholar
  39. 39.
    Mykland, P.A. and Jian-Jian Ren (1996). Algorithms for computing self-consistent and maximum likelihood estimators with doubly censored data,. Annals of Statistics, 24, 1740–1764.MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Nielsen, G.G., Gill, R.D., Andersen, P.K., Sorensen, T.I.A. (1992). A counting process approach to maximum likelihood estimation in frailty models. Scand.Journal Statist., 19, 25–43.MathSciNetzbMATHGoogle Scholar
  41. 41.
    Nikulin, M., Solev, V. (1999). Chi-squared goodness-of-fit test for doubly censored data, applied in Survival Analysis and Reliability. Statistical and Probabilistic Models in Reliability. Eds. I. Ionescu and N. Limnios, Birkhauser: Boston 101–112.CrossRefGoogle Scholar
  42. 42.
    Oakes, D. and Cai L. (1993). On semi-parametric inference for modulated renewal processes, Biometrika, 81, 1, 83–90.CrossRefGoogle Scholar
  43. 43.
    Parner, E. (1998). Asymptotic Theory for the correlated gamma-frailty model. Annals of Statistics, 26, 183–214.MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Rubin, D.B. (1987). Multiple imputation for nonresponse in surveys., John Wiley and sons, ed., New York.Google Scholar
  45. 45.
    Schaffer, J.L. (1997). Analysis of incomplete multivariate data, Chapman and Hall: London.CrossRefGoogle Scholar
  46. 46.
    Schweizer, B. and Sklar, A. (1983). Probabilistic Metric Spaces, North-Holland, ed., Amsterdam.Google Scholar
  47. 47.
    Slud, E.V. and Vonta F. (1999). Consistency of the NPML estimator in the right-censored transformation model. To appear.Google Scholar
  48. 48.
    Tsiatis, A.A. (1981). A large sample study of Cox’s regression model. Annals of Statistics, 9, 93–108.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Turnbull, B.W. (1974). Nonparametric Estimation of a Survivorship Function with Doubly Censored Data. JASA, 69, 345, 290–295.MathSciNetGoogle Scholar
  50. 50.
    Turnbull, B.W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data, J. Roy. Stat. Soc., 38, 290–295.MathSciNetzbMATHGoogle Scholar
  51. 51.
    Vaupel, J. W., Manton, K.G., and Stallard, E. (1979). The impact of heterogeneity in individual frailty and the dynamics of mortality. Demography,16, 439–47.CrossRefGoogle Scholar
  52. 52.
    Viertl, R. (1988).Statistical methods in Accelerated Life Testing, Vanden-hoeck, and Ruprecht in Gottingen.Google Scholar
  53. 53.
    Wei, L.-J., Lin, D. Y., and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of the American Statistical Association,84, 417,1065–1073.MathSciNetCrossRefGoogle Scholar
  54. 54.
    Zhao, L. P., and Prentice, R. L. (1990). Correlated binary regression using the quadratic exponential model. Biometrika,77,642–648.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Catherine Huber
    • 1
  1. 1.Université René DescartesParis VFrance

Personalised recommendations