Advertisement

Pro-p Trees and Applications

  • Luis Ribes
  • Pavel Zalesskii
Chapter
Part of the Progress in Mathematics book series (PM, volume 184)

Abstract

One of the main topics of this chapter is the study of ‘combinatorial’ constructions for pro-p groups. We are interested in those groups that can be defined by means of universal properties, such as free pro-p groups, free and amalgamated free products, HNN-extensions, etc. In some sense these are the basic building blocks of pro-p groups. As in the case of abstract groups, such constructions and their properties can be often best understood by studying the action of the group arising from the constructions on a natural ‘tree’ determined by the construction. The Bass—Serre theory of abstract groups acting on trees gives a complete and satisfying description of those groups as fundamental groups of certain graphs of groups. There is a concept of ‘tree’ which is appropriate for the study of pro-p groups, namely the so-called pro-p tree; we define it here and develop its main properties. By contrast with the situation for abstract groups acting on trees, the structure of a pro-p group acting on a pro-p tree is not yet fully clear. But this is one of the reasons that make this area so attractive, for it is still full of open and interesting problems. Yet, one has a considerable number of results about pro-p groups acting on a pro-p trees, and we give an ample sample of them in the first four sections of this chapter.

Keywords

Normal Subgroup Cayley Graph Inverse Limit Open Subgroup Abstract Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. J. Ash, Inevitable graphs: a proof of the type II conjecture and some related decision procedures, Int. J. Alg. and Comp., 1 (1991), 127–146.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    J. Berstel, Transductions and Context Free Languages, Teubner, 1979.Google Scholar
  3. [3]
    H. Bass, Some remarks on group actions on trees, Comm. Alg., 4 (1976), 1091–1126.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    M. Bestvina and M. Handel, Train tracks and automorphisms of free groups, Ann. Math., 135 (1992), 1–51.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    I. M. Chiswell, Exact sequences associated with a graph of groups, J. Pure Appl. Alg., 8 (1976), 1–36.MathSciNetCrossRefGoogle Scholar
  6. [6]
    W. Dicks, Trees and Projective Modules, Lect. Notes Math., 790, Springer, Berlin, 1980.Google Scholar
  7. [7]
    J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic pro-p Groupss, 2nd edition, CUP, Cambridge, 1999.CrossRefGoogle Scholar
  8. [8]
    J. L. Dyer and G. P. Scott, Periodic automorphisms of free groups, Comm. Alg., 3 (1975), 195–201.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    S. Eilenberg, Automata,Languages and Machines, Vol. A, Academic Press, New York, 1974.MATHGoogle Scholar
  10. [10]
    S. M. Gersten, Fixed points of automorphisms of free groups, Invent. Math., 84 (1986), 91–119.MathSciNetCrossRefGoogle Scholar
  11. [11]
    D. Gildenhuys and L. Ribes, Profinite groups and Boolean graphs, J. Pure Appl. Alg., 12 (1978), 21–47.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    M. Hall, A topology for free groups and related groups, Annals of Math., 52 (1950), 127–139.CrossRefGoogle Scholar
  13. [13]
    K. Henckell, S. W. Margolis, J-E. Pin and J. Rhodes, Ash’s Type II theorem, profinite topology and Malcev products. Part I, Int. J. Alg. and Comp., 1 (1991), 411–436.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    W. N. Herfort and L. Ribes, On automorphisms of free pro-p-groups, Proc. Amer. Math. Soc., 108 (1990), 287–295.MathSciNetMATHGoogle Scholar
  15. [15]
    W. N. Herfort, L. Ribes and P. Zalesskii, Fixed points of automorphisms of free pro-p groups of rank 2, Can. J. Math., 47 (1995), 383–404.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    W. N. Herfort, L. Ribes and P. Zalesskii, Finite extensions of free pro-p groups of rank at most two, Israel J. Math., 107 (1998), 195–227.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    W. N. Herfort, L. Ribes and P. Zalesskii, p-Extensions of free pro-p groups, Forum Mathematicum, 11 (1999), 49–61.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    A. Lubotzky, Combinatorial group theory for pro-p Groupss, J. Pure Appl. Math., 25 (1982), 311–325.MathSciNetMATHGoogle Scholar
  19. [19]
    R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin, 1977.MATHGoogle Scholar
  20. [20]
    S. Mac Lane, Homology, Springer, Berlin, 1963.Google Scholar
  21. [21]
    S. W. Margolis and J. E. Pin, New results on the conjecture of Rhodes and on the topological conjecture, J. Pure Appl. Alg., 80 (1992), 305–313.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    W. S. Massey, Algebraic Topology: An Introduction, Harcout, Brace & World, New York, 1967.MATHGoogle Scholar
  23. [23]
    O. V. Mel’nikov, Projective limits of free profinite groups, Dokl. Acad. Sci. BSSR, 24 (1980), 968–970.MATHGoogle Scholar
  24. [24]
    O. V. Mel’nikov, Subgroups and homology of free products of profinite groups, Math. USSR Izvestiya, 34 (1990), 97–119.MATHCrossRefGoogle Scholar
  25. [25]
    J. Neukirch, Freie Produkte pro-endlicher Gruppen und ihre Kohomologie, Arch. Math., 22 (1971), 337–357.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    J. E. Pin, On a conjecture of Rhodes, Semigroup Forum, 39 (1989), 1–15.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    J. E. Pin and C. Reutenauer, A conjecture on the Hall topology for the free group, Bull. London Math. Soc., 23 (1991), 356–362.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    L. Ribes, On amalgamated products of profinite groups, Math. Z., 123 (1971), 356–364.MathSciNetCrossRefGoogle Scholar
  29. [29]
    L. Ribes and P. Zalesskii, On the profinite topology on a free group, Bull. London Math. Soc., 25 (1993), 37–43.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    L. Ribes and P. Zalesskii, The pro-p topology of a free group and algorithmic problems in semigroups, I. J. Alg. and Comp., 4 (1994), 359–374.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    L. Ribes and R Zalesskii, Profinite Groups, Springer, Berlin, to appear, 2000.MATHGoogle Scholar
  32. [32]
    L. Ribes and R Zalesskii, Profinite Trees, Springer, Berlin, to appear.Google Scholar
  33. [33]
    C. Scheiderer, Real and étale Cohomology, Lect. Notes Math. 1588, Springer, Berlin, 1994.Google Scholar
  34. [34]
    C. Scheiderer, The structure of some virtually free pro-p Groupss, Proc. Amer. Math. Soc., 127 (1999), 695–700.MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    J-R Serre, Sur la dimension cohomologique des groupes profinis, Topology, 3 (1965), 413–420.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    J-R. Serre, A Course in Arithmetic, Springer, Berlin, 1973.MATHCrossRefGoogle Scholar
  37. [37]
    J-R. Serre, Trees, Springer, Berlin, 1980.MATHCrossRefGoogle Scholar
  38. [38]
    J-R. Serre, Galois Cohomology, Springer, Berlin, 1997.MATHCrossRefGoogle Scholar
  39. [39]
    J. Stallings, Topology of finite graphs, Inv. Math., 7 (1983), 551–565.MathSciNetCrossRefGoogle Scholar
  40. [40]
    J. S. Wilson, Profinite Groups, Clarendon Press, Oxford, 1998.MATHGoogle Scholar
  41. [41]
    P. Zalesskii and O. Mel’nikov, Subroups of profinite groups acting on trees, Math. USSR Sbornik, 63 (1989), 405–424.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Luis Ribes
    • 1
  • Pavel Zalesskii
    • 2
  1. 1.Dept. of Mathematics and StatisticsOttawaCanada
  2. 2.Departamento de Matemática-IEBrazil

Personalised recommendations