Abstract
The purpose of this article is to give an exposition on the cohomology of compact p-adic analytic groups. The cohomology theory of profinite groups was initiated by J. Tate and developed by J-P. Serre [23] in the sixties, with applications to number theory. In his extraordinary work on p-adic analytic groups [17], M. Lazard also considered their cohomology and proved two striking theorems: Lazard’s first theorem states that a compact p-adic analytic group G is a virtual Poincaré duality group; his second theorem states that the rational cohomology of G coincides with the G-stable cohomology of its associated \( {\mathbb{Q}_P}\) -Lie algebra L (G). Our main goal is to discuss these results of Lazard in the spirit of the treatment of the structure of p-adic analytic groups in [10]. We also wish to emphasize the close parallels with the theory of discrete duality groups. In order to achieve this goal we need to set up the appropriate homological algebra.
Keywords
- Spectral Sequence
- Short Exact Sequence
- Natural Transformation
- Natural Isomorphism
- Open Subgroup
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
D. J. Benson, Representations and Cohomology, I. Basic Representation Theory of Finite Groups and Associative Algebras, Cambridge Studies in Advanced Mathematics, 30, Cambridge University Press, 1991.
D. J. Benson, Representations and Cohomology, II.Cohomology of Groups and Modules, Cambridge Studies in Advanced Mathematics, 31, Cambridge University Press, 1991.
R. Bieri, B. Eckmann, Groups with homological duality generalizing Poincaré duality, Invent. Math., 20 (1973), 103–124.
N. Bourbaki, General Topology, Chap. 1–4, Elements of Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1989.
K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
A. Brumer, Pseudocompact algebras, profinite groups and class formations, J. Alg., 4 (1966), 442–470.
D. A. Buchsbaum, Exact categories and duality, Trans. Amer. Math. Soc., 80 (1955), 1–34.
H. Cartan, S. Eilenberg, Homological Algebra, Princeton Math. Ser., 19, Princeton, 1956.
P. Day, The May Spectral Sequence, Ph.D. Thesis, Wadham College, Oxford, 1994.
J. D. Dixon, M. P. F. du Sautoy, A. Mann, D. Segal, Analytic pro-p Groupss, 2nd edition, Cambridge University Press, Cambridge, 1999.
A. Douady, Cohomologie des groupes compacts totalement discontinus, Sém. Bourbaki, 1959/60, exposé 189.
L. Evens, The Cohomology of Groups, Oxford University Press, Oxford, 1991.
P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France, 90 (1962), 323–448.
S. I. Gelfand, Yu. I. Manin, Methods of Homological Algebra, Springer, Berlin, Heidelberg, New York, 1996.
C. Kassel, Quantum Groups, Graduate texts in mathematics, 155, Springer-Verlag, New York, Berlin, Heidelberg, 1995.
J. L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France, 78 (1950), 65–127.
M. Lazard, Groupes analytiques p-adiques, IHES Publ. Math., 26 (1965).
S. Mac Lane, Homology, Grundlehren der mathematischen Wissenschaften, 114, Springer-Verlag, Berlin, Heidelberg, New York, 1975, 3rd corrected printing.
J. P. May, The cohomology of restricted Lie algebras and Hopf algebras; applications to the Steenrod algebra, Ph.D. Thesis, Princeton University, 1964.
J. P. May, The cohomology of restricted Lie algebras and Hopf algebras, J. Alg., 3 (1966), 123–146.
J. McCleary, User’s Guide to Spectral Sequences, Mathematical Lecture Series, 12, Publish or Perish, Inc., Wilmington, Delaware (U.S.A.), 1985.
D. Quillen, The spectrum of an equivariant cohomology ring: II, Ann. of Math., 94 (1971), 573–602.
J-P Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics, 5, Springer-Verlag, Berlin, Heidelberg, New York, 1994, cinquième édition, révisée et complétée.
J-P Serre, Sur la dimension cohomologique des groupes profinis, Topology, 3 (1965), 413–420.
E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
Th. Weigel, p-central groups and Poincaré duality, Trans. Amer. Math. Soc., to appear.
J. S. Wilson, Profinite Groups, Oxford University Press, Oxford, 1998.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer Science+Business Media New York
About this chapter
Cite this chapter
Symonds, P., Weigel, T. (2000). Cohomology of p-adic Analytic Groups. In: du Sautoy, M., Segal, D., Shalev, A. (eds) New Horizons in pro-p Groups. Progress in Mathematics, vol 184. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1380-2_12
Download citation
DOI: https://doi.org/10.1007/978-1-4612-1380-2_12
Publisher Name: Birkhäuser, Boston, MA
Print ISBN: 978-1-4612-7122-2
Online ISBN: 978-1-4612-1380-2
eBook Packages: Springer Book Archive