Skip to main content

Cohomology of p-adic Analytic Groups

  • Chapter

Part of the Progress in Mathematics book series (PM,volume 184)

Abstract

The purpose of this article is to give an exposition on the cohomology of compact p-adic analytic groups. The cohomology theory of profinite groups was initiated by J. Tate and developed by J-P. Serre [23] in the sixties, with applications to number theory. In his extraordinary work on p-adic analytic groups [17], M. Lazard also considered their cohomology and proved two striking theorems: Lazard’s first theorem states that a compact p-adic analytic group G is a virtual Poincaré duality group; his second theorem states that the rational cohomology of G coincides with the G-stable cohomology of its associated \( {\mathbb{Q}_P}\) -Lie algebra L (G). Our main goal is to discuss these results of Lazard in the spirit of the treatment of the structure of p-adic analytic groups in [10]. We also wish to emphasize the close parallels with the theory of discrete duality groups. In order to achieve this goal we need to set up the appropriate homological algebra.

Keywords

  • Spectral Sequence
  • Short Exact Sequence
  • Natural Transformation
  • Natural Isomorphism
  • Open Subgroup

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. J. Benson, Representations and Cohomology, I. Basic Representation Theory of Finite Groups and Associative Algebras, Cambridge Studies in Advanced Mathematics, 30, Cambridge University Press, 1991.

    MATH  Google Scholar 

  2. D. J. Benson, Representations and Cohomology, II.Cohomology of Groups and Modules, Cambridge Studies in Advanced Mathematics, 31, Cambridge University Press, 1991.

    MATH  Google Scholar 

  3. R. Bieri, B. Eckmann, Groups with homological duality generalizing Poincaré duality, Invent. Math., 20 (1973), 103–124.

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. N. Bourbaki, General Topology, Chap. 1–4, Elements of Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1989.

    Google Scholar 

  5. K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer-Verlag, New York, Heidelberg, Berlin, 1982.

    CrossRef  MATH  Google Scholar 

  6. A. Brumer, Pseudocompact algebras, profinite groups and class formations, J. Alg., 4 (1966), 442–470.

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. D. A. Buchsbaum, Exact categories and duality, Trans. Amer. Math. Soc., 80 (1955), 1–34.

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. H. Cartan, S. Eilenberg, Homological Algebra, Princeton Math. Ser., 19, Princeton, 1956.

    Google Scholar 

  9. P. Day, The May Spectral Sequence, Ph.D. Thesis, Wadham College, Oxford, 1994.

    Google Scholar 

  10. J. D. Dixon, M. P. F. du Sautoy, A. Mann, D. Segal, Analytic pro-p Groupss, 2nd edition, Cambridge University Press, Cambridge, 1999.

    CrossRef  Google Scholar 

  11. A. Douady, Cohomologie des groupes compacts totalement discontinus, Sém. Bourbaki, 1959/60, exposé 189.

    Google Scholar 

  12. L. Evens, The Cohomology of Groups, Oxford University Press, Oxford, 1991.

    MATH  Google Scholar 

  13. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France, 90 (1962), 323–448.

    MathSciNet  MATH  Google Scholar 

  14. S. I. Gelfand, Yu. I. Manin, Methods of Homological Algebra, Springer, Berlin, Heidelberg, New York, 1996.

    Google Scholar 

  15. C. Kassel, Quantum Groups, Graduate texts in mathematics, 155, Springer-Verlag, New York, Berlin, Heidelberg, 1995.

    CrossRef  MATH  Google Scholar 

  16. J. L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France, 78 (1950), 65–127.

    MathSciNet  MATH  Google Scholar 

  17. M. Lazard, Groupes analytiques p-adiques, IHES Publ. Math., 26 (1965).

    Google Scholar 

  18. S. Mac Lane, Homology, Grundlehren der mathematischen Wissenschaften, 114, Springer-Verlag, Berlin, Heidelberg, New York, 1975, 3rd corrected printing.

    Google Scholar 

  19. J. P. May, The cohomology of restricted Lie algebras and Hopf algebras; applications to the Steenrod algebra, Ph.D. Thesis, Princeton University, 1964.

    Google Scholar 

  20. J. P. May, The cohomology of restricted Lie algebras and Hopf algebras, J. Alg., 3 (1966), 123–146.

    CrossRef  MATH  Google Scholar 

  21. J. McCleary, User’s Guide to Spectral Sequences, Mathematical Lecture Series, 12, Publish or Perish, Inc., Wilmington, Delaware (U.S.A.), 1985.

    MATH  Google Scholar 

  22. D. Quillen, The spectrum of an equivariant cohomology ring: II, Ann. of Math., 94 (1971), 573–602.

    CrossRef  MathSciNet  Google Scholar 

  23. J-P Serre, Cohomologie Galoisienne, Lecture Notes in Mathematics, 5, Springer-Verlag, Berlin, Heidelberg, New York, 1994, cinquième édition, révisée et complétée.

    MATH  Google Scholar 

  24. J-P Serre, Sur la dimension cohomologique des groupes profinis, Topology, 3 (1965), 413–420.

    CrossRef  MathSciNet  MATH  Google Scholar 

  25. E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

    MATH  Google Scholar 

  26. Th. Weigel, p-central groups and Poincaré duality, Trans. Amer. Math. Soc., to appear.

    Google Scholar 

  27. J. S. Wilson, Profinite Groups, Oxford University Press, Oxford, 1998.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Symonds, P., Weigel, T. (2000). Cohomology of p-adic Analytic Groups. In: du Sautoy, M., Segal, D., Shalev, A. (eds) New Horizons in pro-p Groups. Progress in Mathematics, vol 184. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1380-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1380-2_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7122-2

  • Online ISBN: 978-1-4612-1380-2

  • eBook Packages: Springer Book Archive