Skip to main content

Hypercomplex Derivability — The Characterization of Monogenic Functions in ℝn+1 by Their Derivative

  • Chapter
Clifford Algebras and their Applications in Mathematical Physics

Part of the book series: Progress in Physics ((PMP,volume 19))

  • 666 Accesses

Abstract

From the concept of hypercomplex differentiability (introduced at the end of the 1980’s ([6], [7]) by using local linear approximation properties of monogenic functions) the existence of a monogenic derivative does not directly follow. We show that if some relation between higher order differential forms are introduced then, (as in the complex case) the conjugated Cauchy-Riemann operator again gives the monogenic derivative of a monogenic function in ℝn+1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Brackx, R. Delanghe, and F. Sonmmen, Clifford Analysis 76, Pitman, Boston-London-Melbourne, 1982.

    Google Scholar 

  2. H. E. Edwards, Advanced Calculus: A Differential Forms Approach, Third Edition, Birkhäuser, Boston, Basel, Berlin, 1993.

    Google Scholar 

  3. K. Giirlebeck and H. Malonek, A hypercomplex derivative of monogenic functions in ℝn+1 and its applications, Complex Variables Theory Appl., Vol. 39 (1999), 199–228.

    Article  MathSciNet  Google Scholar 

  4. K. Giirlebeck and W. Sprößig, Quaternionic and Clifford Calculus for Engineers and Physicists, John Wiley &. Sons, Chichester, 1997.

    Google Scholar 

  5. K. Habetha, Eine bemerkung zur funktionentheory in algebren, in Function Theoretic Methods for Partial Differential Equations, V. E. Meister, N. Weck, and W. L. Wendland, eds., Lecture Notes in Mathematics, Vol. 561, Springer, Berlin, Heidelberg, New York, 1976, 502–509.

    Chapter  Google Scholar 

  6. H. Malonek, Zum holomorphiebegriff in höheren dimensionen, Habilitation Thesis, PH Halle, 1987.

    Google Scholar 

  7. H. Malonek, A new hypercomplex structure of the Euclidean space ℝm+1 and the concept of hypercomplex differentiability, Complex Variables Theory Appl., Vol. 14 (1990), 25–33.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Malonek, Power series representation for monogenic functions in ℝm+1 based on a permutational product, Complex Variables Theory Appl., Vol. 15 (1990), 181–191.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Malonek, The concept of hypercomplex differentiability and related differential forms, in Studies in Complex Analysis and Its Applications to Partial Differential Equations 1, R. Kühnau and W. Tutschke, eds., Pitman 256, Longman, 1991, 193–202.

    Google Scholar 

  10. A. S. Mejlihzon, Because of monogeneity of quaternions (in Russian), Doklady Acad. Sc. USSR 59 (1948), 431–434.

    Google Scholar 

  11. I. M. Mitelman and M. V. Shapiro, Differentiation of the MartinelliВochner integrals and the notion of hyperderivability, Math. Nachr. 172 (1995), 211–238.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Ryan, Clifford analysis with generalized elliptic and quasi-elliptic functions, Applicable Analysis 13 (1982), 151–171.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Sommen, Monogenic differential forms and homology theory, Proc. R. Irish Acad., Vol. 84A No. 2 (1984), 87–109.

    Google Scholar 

  14. F. Sommen, Monogenic differential calculus, Trans. AMS, Vol. 326 No. 2 (1991), 613–632.

    MathSciNet  MATH  Google Scholar 

  15. W. Sprößig, Über eine mehrdimensionale operatorrechnumg über beschränkten gebieten des Rℝn, Thesis, TH Karl-Marx-Stadt, 1979.

    Google Scholar 

  16. A. Sudbery, Quaternionic analysis, Math. Proc. Cambr. Phil. Soc. 85 (1979), 199–225.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malonek, H.R. (2000). Hypercomplex Derivability — The Characterization of Monogenic Functions in ℝn+1 by Their Derivative. In: Ryan, J., Sprößig, W. (eds) Clifford Algebras and their Applications in Mathematical Physics. Progress in Physics, vol 19. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1374-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1374-1_15

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7119-2

  • Online ISBN: 978-1-4612-1374-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics