Advertisement

A Simple Singular Quantum Markov Semigroup

  • Franco Fagnola
Conference paper
Part of the Trends in Mathematics book series (TM)

Abstract

We construct a quantum Markov semigroup on the von Neumann algebra B(L 2(ℝ+;ℂ)) of all bounded operators on a Hilbert space L 2(ℝ+;ℂ) with the following property: the biggest *-subalgebra of B(L 2(ℝ+;ℂ)) contained in the domain of the infinitesimal generator is not σ-weakly dense. Our semigroup is an extension of a classical Markov semigroup on L (ℝ+;ℂ) with the same property.

Keywords

Infinitesimal Generator Contraction Semigroup Markov Semigroup Weak Operator Topology Fell Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Accardi, A. Mohari: On the Structure of Classical and Quantum Flows. J. Funct. Anal. 135 (1996), 421–455.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    B.V.R. Bhat, F. Fagnola, K.B. Sinha: On quantum extensions of semi-groups of brownian motions on an half-line. Russian J. Math. Phys. 4 (1996), 13–28.MathSciNetMATHGoogle Scholar
  3. [3]
    O. Bratteli, D.W. Robinson: Operator Algebras and Quantum Statistical Mechanics I. Springer-Verlag, New York, 1979.CrossRefGoogle Scholar
  4. [4]
    A.M. Chebotarev, F. Fagnola: Sufficient Conditions for Conservativity of Minimal Quantum Dynamical Semigroups. J. Funct. Anal. 153 (1998), 382–404.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    F. Fagnola: Diffusion processes in Fock space. Quantum Probability and Related Topics IX (1994), 189–214.Google Scholar
  6. [6]
    F. Fagnola, R. Monte: A quantum extension of the semigroup Bessel processes. Mat. Zametki 60:5 (1996), 519–537.MathSciNetGoogle Scholar
  7. [7]
    F. Fagnola, R. Rebolledo: The approach to equilibrium of a class of quantum dynamical semigroups. Infinite Dimensional Analysis, Quantum Probability and Related Topics 1:4 (1998), 561–572.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    T. Kato: Perturbation theory for linear operators. Springer-Verlag, Berlin, 1966.MATHGoogle Scholar
  9. [9]
    A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Berlin, 1975.Google Scholar
  10. [10]
    W.F. Stinespring: Positive functions on C*-algebras, Proc. Am. Math. Soc., 6 (1955), 211–216.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Franco Fagnola
    • 1
    • 2
  1. 1.Dipartimento di MatematicaUniversità degli Studi di GenovaGenovaItaly
  2. 2.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations