Skip to main content

Finite Ultrametric Spaces and Computer Science

  • Chapter
Categorical Perspectives

Part of the book series: Trends in Mathematics ((TM))

Abstract

The purpose of the paper is to describe a few properties of ultrametric spaces (in particular, of finite ones) and to demonstrate some applications of these properties to computer science.

A metric space (X, d) is called ultrametric [6] (or non-Archimedean [4], or isosceles [9]) if its metric satisfies the strong triangle axiom:

$$ d\left( {x,z} \right) \leqslant \max \left[ {d\left( {x,y} \right),d\left( {y,z} \right)} \right]. $$
(Δ)

This is usually called the Ultrametric Axiom. Ultrametric spaces were described up to homeomorphism in [3, 21], up to uniform equivalence in [10], and up to isometry in [9, 20]. A survey of their metric [9, 20], geometric [14, 20], uniform [10], and categorical [11–17] properties can be found in the literature. The theory of ultrametric spaces is closely connected with various branches of mathematics. These are number theory (rings Z p and fields Q p of p-adic numbers), algebra (non-Archimedean normed fields), real analysis (the Baire space \( {B_{{\aleph _o}}} \)), general topology (generalized Baire spaces B τ ), p-adic analysis (field Ω), p-adic functional analysis (algebras of Ω-valued functions), lattice theory [17], Lebesgue measure theory [18], Euclidean geometry [14], category theory and topoi [13, 15, 16], and so on. These relations deal with infinite ultrametric spaces (mainly separable). For applications in computer science, finite spaces are of interest as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P.S. Alexandroff. On the theory of topological spaces, Soviet Math. Dokl, 2 (1936), 51–54 (in Russian).

    Google Scholar 

  2. B. Flagg and R. Kopperman. Computational Models for Ultrametric Spaces, XIII Conference on Mathematical Foundations of Programming Semantics, 1997, 83–92.

    Google Scholar 

  3. J. de Groot. Non-Archimedean metrics in topology, Proc. A.M.S., 7:6 (1956), 948–956. MR 18-325.

    Article  MATH  Google Scholar 

  4. F. Hausdorff. Uber innere Abbildungen, Fund. Math. 23 (1934), 279–291.

    Google Scholar 

  5. W. Holsztynski. Initial and universal metric spaces, Proc. A.M.S., 58 (1976), 306–310. MR 56 #13174.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Krasner. Nombres semi-réels et espaces ultramétriques, C. R. Acad. Sci., Paris, 219 (1944), 433–435. MR 7-364.

    MathSciNet  MATH  Google Scholar 

  7. K. Kuratowski. Quelques problèmes concernant les espaces métriques non-sépaprable, Fund. Math., 25 (1935).

    Google Scholar 

  8. J.D. Lawson. Spaces of maximal points, preprint, 1995.

    Google Scholar 

  9. A.J. Lemin. On isosceles metric spaces, Functional Analysis and its Applications, Moscow, MSU-Press, 1884, 26–31 (in Russian).

    Google Scholar 

  10. A.J. Lemin. Proximity on isosceles spaces, Russian Math. Surveys, 39:1 (1984), 143–144. MR 86j: 54059.

    Article  MathSciNet  Google Scholar 

  11. A.J. Lemin. On the stability of the property of a space being isosceles, Russian Math. Surveys, 39:5 (1984), 283–284. MR 86b: 54029.

    Google Scholar 

  12. A.J. Lemin. Transition functors to a function space in the uniform topology, Russian Math. Surveys, 40:6 (1985), 133–134.

    Article  MathSciNet  Google Scholar 

  13. A.J. Lemin. Inverse images of metric spaces under non-expanding open mappings, Russian Math. Surveys, (1988), 214–215.

    Google Scholar 

  14. A.J. Lemin. Isometric embedding of isosceles (non-Archimedean) spaces in Euclidean spaces, Soviet Math. Dokl., 32:3 (1985), 740–744. MR 87h: 54056.

    MathSciNet  MATH  Google Scholar 

  15. A.J. Lemin. An application of the theory of isosceles (ultrametric) spaces to the Trnkova-Vinarek theorem, Comment. Math. Univ. Carolinae, 29:3 (1988), 427–434.

    Google Scholar 

  16. A.J. Lemin. Spectral decomposition of ultrametric spaces and topos theory, 14 th Summer Conf. on Topology & App., Abstracts: Long Island Univ., Aug. 4–7, 1999, 22.

    Google Scholar 

  17. A.J. Lemin. The category of ultrametric spaces is isomorphic to the category of complete, atomic, tree-like, real graduated lattices LAT*, to appear.

    Google Scholar 

  18. A.J. Lemin. Isometric embedding of ultrametric (=non-Archimedean) spaces in the Lebesgue spaces, to appear.

    Google Scholar 

  19. A.J. Lemin and V.A. Lemin. On uniform rationalization of ultrametrics, Topology Proceedings, 22, Summer 1997, 275–283.

    MathSciNet  Google Scholar 

  20. A.J. Lemin and V.A. Lemin. On a universal ultrametric space, Topology and its Applications, to appear.

    Google Scholar 

  21. K. Morita. Normal families and dimension theory for metric spaces, Math Ann., 128 (1954), 350–362. MR 16-501.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Mrowka. Recent results on E-compact spaces, Proc. 2 nd Intl. Conf. General Topology and its Applications, 1972. MR 50-14673.

    Google Scholar 

  23. K. Nagami. A note on Hausdorff spaces with star-finite property. I, II, Proc. Japan Acad., 37 (1961), 131–134.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Nagami. A note on Hausdorff spaces with star-finite property. I, II, Proc. Japan Acad., 37 (1961), 189–192. MR 26 #1852.

    Article  MATH  Google Scholar 

  25. V.I. Ponomarev. Axioms of countability and continuous mappings, Bull. Acad. Pol. Sci., 8:3 (1960), 127–134. MR 22 #7109.

    Google Scholar 

  26. P. Roy. Non-equality of dimensions for metric spaces, Trans. A.M.S., 134 (1968), 117–132. MR 37 #3544.

    Article  MATH  Google Scholar 

  27. Yu.M. Smirnov, On proximity spaces, Math. Sbornik, 31 (1952), 543–574 (in Russian),

    Google Scholar 

  28. Yu.M. Smirnov, On proximity spaces, A.M.S. Trans. Ser. 2, 31 (1952), 543–574 (in Russian), 38, 5–35.

    Google Scholar 

  29. Yu.M. Smirnov, On the dimension of proximity spaces, Math. Sbornik, 38 (1956), 283–302 (in Russian).

    Google Scholar 

  30. Yu.M. Smirnov, On the dimension of proximity spaces, A.M.S. Trans. Ser. 2, 38, (1956) 37–73.

    Google Scholar 

  31. E.V. Schepin. Private communication.

    Google Scholar 

  32. A.F. Timan. On isometric embedding of certain countable ultrametric spaces in the L p -space, in [30], 314–326 (in Russian).

    Google Scholar 

  33. Trudy of Mathematical Institute of the USSR Acad. Sci., 134 (1975). Collection of articles dedicated to Sergey Mihailovich Nikolski on the occasion of his seventieth birthday, Moscow, 1975.

    Google Scholar 

  34. J.E. Vaughan. Universal ultrametric spaces of smallest weight, 1999, 1–7, preprint.

    Google Scholar 

  35. J.E. Vaughan. Universal ultrametric spaces of smallest weight, 14 th Summer Conf. on Topology & App., Abstracts: Long Island Univ., Aug. 4–7, 1999, 38–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lemin, V.A. (2001). Finite Ultrametric Spaces and Computer Science. In: Koslowski, J., Melton, A. (eds) Categorical Perspectives. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1370-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1370-3_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7117-8

  • Online ISBN: 978-1-4612-1370-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics