Skip to main content

An Introduction to Pseudotwistors: Spinor Solutions vs. Harmonic Forms and Cohomology Groups

  • Chapter
Clifford Algebras and their Applications in Mathematical Physics

Part of the book series: Progress in Physics ((PMP,volume 18))

  • 724 Accesses

Abstract

Penrose observed in 1976 [27] that the points of the Minkowski space-time can be represented by two-dimensional subspaces of a complex four-dimensional vector space on which an hermitian form of signature (+ +−−) is defined. He called this flat twistor space, and the method of investigating deformation of complex structures, yielded from there the twistor program. This initiated a series of papers and monographs by various authors. In the present paper, we deal with dynamical systems generated by the hermitian Hurwitz pairs of the signature (σ,s), σ + s = 5 + 4μ, | σ + 1 − s| = 2 + 4m;μ,m = 0,1,… In particular for the signature (3,2) and its dual (1,4), the role of entropy was indicated as well as the relationship between Hurwitz and Penrose twistors, Hurwitz twistors being objects introduced by us. The signatures (1,8) and (7,6) give rise for introducing pseudotwistors and bitwistors, respectively. For pseudotwistors, we can prove a counterpart of the original fundamental Penrose theorem in the local version (on real analytic solutions of the spinor equations vs. harmonic forms, related to the original relativistic wave equations) and in the semi-global version (on holomor-phic solutions of those equations vs. Dolbeault cohomology groups). This had to be preceded [24] by basic constructions, a study of the related pseudotwistors and spinor equations as well as complex structures on spinors. In particular, we proved a theorem (which we call the atomization theorem) saying that there exist complex structures on isometric embeddings for the hermitian Hurwitz pairs concerned so that the embeddings are real parts of holomorphic mappings. The atomization theorem enables us to introduce an analysis with respect to an embedding l: (2(2,4) → M, M being a C-manifold, which we call the quaternic analysis, and develop it from the point of view of quaternal spinors and quaternal harmonic forms, and finally to prove rigorously the above mentioned theorems on spinor solutions vs. harmonic forms and the cohomology group. Finally, a physical motivation is given for the double Cartan-like triality of the pairs concerned as well as an introduction to five-dimensional stochastical electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. M. Agranovich, Teoriya èksitonov, Izd. Nauka, Moscow, 1968.

    Google Scholar 

  2. E. Cartan, Le principe de dualité et la théorie des groupes simples et semi-simples, Bull. Sci. Math. France 49 (1925), 367 - 374.

    Google Scholar 

  3. E. Cartan: The Theory of Spinors, Second Edition, Hermann, Paris, 1966, 120.

    MATH  Google Scholar 

  4. E. I. Dinaburg, On the relations among various entropy characteristics of dynamical systems, in Dynamical Systems, Ya. G. Sina i, ed., Advanced Series in Nonlinear Dynamics 1, Amer. Math. Soc, New York, 1972, 337 - 350.

    Google Scholar 

  5. E. Fermi, Thermodynamics, Second Edition, Dover Publ., New York, 1956, 46 - 76.

    Google Scholar 

  6. I. Furuoya, S. Kanemaki, J. Lawrynowicz, and O. Suzuki, Hermitian Hur-witz pairs, in Deformations of Mathematical Structures II. Hurwitz-Type Structures and Applications to Surface Physics, J. Lawrynowicz, Kluwer Academic, Dordrecht, 1994, 135 - 154.

    Chapter  Google Scholar 

  7. B. Gaveau, J. Lawrynowicz, and L. Wojtczak, Statistical mechanics of an-harmonic crystals, Physica Status Solidi (b) 121 (1984), 47 - 58.

    Article  Google Scholar 

  8. H. Grauert, Discrete geometry, Nachrichten Akad. Wiss. Göttingen No. 6 (1996), 343 - 362.

    Google Scholar 

  9. Sir W. R. Hamilton, Lectures on Quaternions, Dublin, 1853, and The Mathematical Papers of Sir William Rowan Hamilton, Vol. III, Algebra, Cambridge Univ. Press, London, 1967, 106-110.

    Google Scholar 

  10. K. Imaeda, Quatemionic Formulation of Classical Electrodynamics and Theory of Functions of a Biquaternion Variable, Okayama Univ. of Science, Okayama, 1983.

    Google Scholar 

  11. S. Kanemaki and O. Suzuki, Hermitian pre-Hurwitz pairs and the Minkowski space, in Deformations of Mathematical Structures. Complex Analysis with Physical Applications, J. Lawrynowicz, Kluwer Academic, Dordrecht, 1989, 225 - 232.

    Google Scholar 

  12. J. Lawrynowicz, Type-changing transformations of pseudo-euclidean Hur-witz pairs, Clifford analysis, and particle lifetimes, in Clifford Algebras and Their Applications in Mathematical Physics, V. Dietrich, K. Habetha, and G. Jank, eds., Kluwer Academic, Dordrecht, 1998, 217 - 226.

    Chapter  Google Scholar 

  13. J. Lawrynowicz, J. Rembielinski, Pseudo-euclidean Hurwitz pairs and generalized Pueter equations, (a) Inst. of Math. Polish Acad. Sci., preprint No. 355 (1985), ii + 10, (b) in Clifford Algebras and Their Applications in Mathematical Physics, Proceedings, J. S. R. Chisholm and A. K. Common, eds., Canterbury, 1985, NATO-ASI Series C: Mathematical and Physical Sciences 183, Reidel, Dordrecht, 1986, 39 - 48.

    Google Scholar 

  14. J. Lawrynowicz, J. Rembielinski, Complete classification for pseudoeuclidean Hurwitz pairs including the symmetry operations, (a) Inst. of Phys. Univ. of Lódz, preprint No. 86-5 (1986), 15, (b) Bull. Soc. Sci. Lettres Lódz 36 No. 29, Sér. Rech. Déform. 4 No. 39 (1986), 15 pp.

    Google Scholar 

  15. J. Lawrynowicz, J. Rembielinski, Pseudo-euclidean Hurwitz pairs and the Kaluza-Klein theories, (a) Inst. of Phys. Univ. of Lódz, preprint, No. 86-8 (1986), 28 pp., (b) J. Phys. A: Math. Gen. 20 (1987), 5831 - 5848.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Lawrynowicz, J. Rembielinski, On the composition of nondegenerate quadratic forms with an arbitrary index, (a) Inst. of Math. Polish Acad. Sci., preprint No. 369 (1986), ii + 29 pp., (b) Ann. Fac. Sci. Toulouse Math. (2.2) 10 (1989), 141-168 [due to a printing error in Vol. 10, the whole article was reprinted in Vol. 11 (1990), No. 1 of the same journal, 141-168].

    Google Scholar 

  17. J. Lawrynowicz, W. A. Rodrigues and L. Wojtczak, Stochastical electrodynamics in Clifford-analytical formulation related to entropy-depending structures, Rep. Math. Phys. 46 (2000), to appear.

    Google Scholar 

  18. J. Lawrynowicz and O. Suzuki, (a) Inst. of Math. Polish Acad. Sci., preprint, No. 569 (1997), ii + 30 pp., (b) Advances Appl. Clifford Algebras 8 (1998), 147 - 179.

    MathSciNet  MATH  Google Scholar 

  19. J. Lawrynowicz and O. Suzuki, An approach to the 5-, 9-, and 13-dimensional complex dynamics I. Dynamical aspects, Bull. Soc. Sci. Lettres Lódz 48 5er. Rech. Déform. 25 (1998), 7 - 39.

    MathSciNet  Google Scholar 

  20. J. Lawrynowicz and O. Suzuki, An approach to the 5-, 9-, and 13-dimensional complex dynamics II. Twistor aspects, ibid. 48 Sér. Rech. Déform. 26 (1998), 23 - 48.

    MathSciNet  Google Scholar 

  21. J. Lawrynowicz and O. Suzuki, Hurwitz-type and space-time-type duality theorems for hermitian Hurwitz pairs, in Complex Analysis and Its Applications, E. Ramírez de Arellano, M. Shapiro, L. M. Tovar, and N. Vasilevski, eds., Birkhäuser, Basel, 1999, 201 - 217.

    Google Scholar 

  22. J. Lawrynowicz and O. Suzuki, An introduction to pseudotwistors — basic constructions, in Quaternionic Structures in Mathematical Physics, S. Marchiafava and M. Pontecorvo, eds., Rome, 2000, to appear.

    Google Scholar 

  23. J. Lawrynowicz and O. Suzuki, An introduction to pseudotwistors — spinor equations, Rev. Roumaine Math. Pures Appl., to appear.

    Google Scholar 

  24. J. Lawrynowicz and O. Suzuki, An introduction to pseudotwistors — spinor equations and atomization on isometric embeddings, Internat. J. Theor. Phys. 39 (2000), to appear.

    Google Scholar 

  25. J. Lawrynowicz, Stochastical mechanics of particle systems in Clifford-analytical formulation related to Hurwitz pairs of bidimension (8,5), in Deformations of Mathematical Structures II. Hurwitz-Type Structures and Applications to Surface Physics, J. Lawrynowicz, ed., Kluwer Academic, Dordrecht, 1994, 213 - 262.

    Chapter  Google Scholar 

  26. P. Lounesto, Clifford Algebras and Spinors, (London Math. Soc. Lecture Notes Series 239), Cambridge Univ. Press, Cambridge 1997, viii.

    Google Scholar 

  27. R. Penrose, The twistor program, Rep. Math. Phys. 12 (1977), 65 - 76.

    MathSciNet  Google Scholar 

  28. I. R. Porteous, Clifford Analysis and the Classical Groups, (Cambridge Studies in Advanced Mathematics 50 ), Cambridge Univ. Press, Cambridge, 1995.

    Google Scholar 

  29. A. Trautman, Fibre bundles associated with space-time, Rep. Math. Phys. 1 (1970), 29 - 62.

    MathSciNet  MATH  Google Scholar 

  30. R. O. Wells, Jr., Complex Geometry in Mathematical Physics, Séminaire de Mathématiques supérieures — Université de Montréal, Montréal, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ławrynowicz, J., Suzuki, O. (2000). An Introduction to Pseudotwistors: Spinor Solutions vs. Harmonic Forms and Cohomology Groups. In: Abłamowicz, R., Fauser, B. (eds) Clifford Algebras and their Applications in Mathematical Physics. Progress in Physics, vol 18. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1368-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1368-0_20

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7116-1

  • Online ISBN: 978-1-4612-1368-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics