Skip to main content

Infiltration Processes in Composite Materials Manufacturing: Modeling and Qualitative Results

  • Chapter

Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

This chapter deals with those composite materials manufacturing processes, e.g., resin transfer molding and structural resin injection molding, consisting in the injection of a liquid into a porous medium made of reinforcing elements. In these processes the infiltration is coupled with phenomena affecting both the rheological properties of the liquid (thermal variation and curing) and the mechanical properties of the solid (deformations). We illustrate the general model and the analytical results obtained so far.

Keywords

  • Porous Medium
  • Injection Moulding
  • Free Boundary Problem
  • Solid Volume Fraction
  • Infiltration Process

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4612-1348-2_9
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-1-4612-1348-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Hardcover Book
USD   149.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Hamdan, A., Rudd, C.D., and Long, A.C., Dynamic core movements during liquid moulding of sandwich structures, Composites A, 29A, 273–82 (1998).

    CrossRef  Google Scholar 

  2. Ambrosi, D., and Preziosi, L., Modelling matrix injection through elastic porous preforms, Composites A, 29A, 5–18 (1998).

    CrossRef  Google Scholar 

  3. Ambrosi D., and Preziosi L., Modelling injection moulding processes with deformable porous preform, SIAM J. Appl. Math., in press.

    Google Scholar 

  4. Antonelli, D., and Farina, A., Injection moulding: Mathematical modelling and numerical simulations, Composites A, in press.

    Google Scholar 

  5. Baichen, L., Bickerton, S., and Advani, S.G., Modelling and simulation of resin transfer moulding (RTM)—Gate control, venting and dry spot prediction, Composites A,27A, 135–41 (1996).

    Google Scholar 

  6. Beavers, G.S., and Joseph, D.D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 197–207 (1967).

    CrossRef  Google Scholar 

  7. Billi, L., Incompressible flows through porous media with temperature variable parameters, Nonlinear Analysis, Theory, Math and Appl.,31, 363–383 (1998).

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Billi, L., Non-isothermal flows in porous media with curing, EJAM, 8, 623–637.

    Google Scholar 

  9. Billi, L., and Farina, A., Unidirectional infiltration in deformable porous media: Mathematical modelling and self-similar solution, Quart. Appl. Math., in press.

    Google Scholar 

  10. Blest, D.C., Duffy, B.R., McKee, S., and Marshall, P., A model of the fluid dynamics of resin-film infusion, Strathclyde Mathematics Research Reports, N. 3 (1995).

    Google Scholar 

  11. Blest, D.C., Duffy, B.R., McKee, S., and Zulkifle, A.K., Curing simulation of thermoset composites, Strathclyde Mathematics Research Reports, N. 37 (1998).

    Google Scholar 

  12. Bowen, R.M., Incompressible porous media models by use of the theory of mixtures, Int. J. Engng. Sci., 18, 1129–48 (1980).

    MATH  CrossRef  Google Scholar 

  13. Bowen, R.M., Theory of mixtures, in Continuum Physics, 3, edited by A.C. Eringen, Academic Press (1976).

    Google Scholar 

  14. Bruschke, M.V., and Advani, S.G., A finite element control volume approach to mould filling in anisotropic porous media, Polymer Compos., 11, 398–405 (1990).

    CrossRef  Google Scholar 

  15. Bruschke, M.V., and Advani, S.G., A numerical approach to model non-isothermal viscous flow through fibrous media with free surfaces, Int. J. Num. Meth. Fluids, 19, 575–603 (1994).

    MATH  CrossRef  Google Scholar 

  16. Calhoun, D.R., Yalvaç, S., Wetters, D.G., Wu, C.H., Wang, T.J., Tsai, J.S., and Lee, L.J., Mold filling analysis in resin transfer molding, Polymer Compos., 17, 251–64 (1996).

    CrossRef  Google Scholar 

  17. Farina, A., Cocito, P., and Boretto, G., Flow in deformable porous media: Modelling and simulations of the compression moulding process, Mathl. Comput. Modelling, 26, 1–15 (1997).

    MathSciNet  MATH  CrossRef  Google Scholar 

  18. Farina, A., and Preziosi, L., Non—isothermal injection moulding with resin cure and preform deformability, Composites A, submitted.

    Google Scholar 

  19. Fasano, A., and Primicerio, M., Free boundary problems for nonlinear parabolic equations, J. Math. Anal. Appl., 72, 247–73 (1979).

    MathSciNet  MATH  CrossRef  Google Scholar 

  20. Gonzalez-Romero, V.M., and Macosko, C.W., Process parameters estimation for structural reaction injection moulding, Polym. Engng. Sci., 30, 142–6 (1990).

    CrossRef  Google Scholar 

  21. Hammami, A., Gauvin, R., and Trochu, F., Modelling the edge effect in liquid composites molding, Composites A, 29A, 603–9 (1998).

    CrossRef  Google Scholar 

  22. Han, K., Lee, L.J., and Liu, M.J., Fiber mat deformation in liquid composite moulding. II: Modelling, Polymer Compos., 14, 151–60 (1993).

    CrossRef  Google Scholar 

  23. Hornung, U., Homogenization and Porous Media, Springer (1996).

    Google Scholar 

  24. Isayev, A.I., Injection and Compression Moulding Fundamentals, Marcel Dekker (1987).

    Google Scholar 

  25. Jäger, W., and Mikelic, A., On the boundary conditions at the contact interface between a porous medium and a free fluid, Annah della Scuola Normale Superiore di Pisa, Serie IV, 23, 403–65 (1996).

    MATH  Google Scholar 

  26. Joseph, D.D., Fluid Dynamics of Viscoelastic Liquids, Springer—Verlag (1990).

    MATH  Google Scholar 

  27. Kim, Y.R., McCarthy, S.P., and Fanucci, J.P., Compressibility and relaxation of fiber reinforcements during composite processing, Polymer Compos., 12, 13–9 (1991).

    CrossRef  Google Scholar 

  28. Lacoste, E., Aboulfatah, M., Danis, M., and Girot, F., Numerical simulation of the infiltration of fibrous preforms by pure metal, Metall. Trans., 24A, 2667–78 (1993).

    Google Scholar 

  29. Lacoste, E., Danis, M., Girot, F., and Quennisset, J.M., Numerical simulation of the injection moulding of thin parts by liquid metal infiltration of fibrous preform, Mater. Sci. Eng. A, 135, 45–9 (1991).

    CrossRef  Google Scholar 

  30. Ladyzenskaja, O.A., Solonnikov, V.A., and Ural’ceva, N.N., Linear and Quasilinear Equations of Parabolic Type, AMS Translations of Mathematical Monographs 23 (1968).

    Google Scholar 

  31. Lin, M., Hahn, T., and Huh, H., A finite element simulation of resin transfer molding based on partial nodal saturation and implicit time integration, Composites A, 29A, 541–50 (1998).

    CrossRef  Google Scholar 

  32. Liu, I.S., On chemical potential and incompressible porous media, J. Mech., 19, 327–42 (1980).

    Google Scholar 

  33. Mallik, P.K., Fiber-Reinforced Composites: Materials Manufacturing and Design, Marcel Dekker (1988).

    Google Scholar 

  34. Markov, K., and Preziosi L., eds., Heterogeneous Solids: Micromechanics,Modelling Methods and Simulations, Birkhäuser (1999).

    Google Scholar 

  35. Mortensen, A., Masur, L.J., Cornie, J.A., and Flemings, M.C., Infiltration of fibrous preforms by a pure metal: Part I. Theory, Metall. Trans., 20A, 2535–47 (1989).

    Google Scholar 

  36. Müller, I., Rational thermodynamics of mixtures of fluids, in Thermodynamic and Constitutive Equations, Lecture Notes in Physics 228, edited by G. Grioli, Springer-Verlag (1985).

    Google Scholar 

  37. Munaf, D., Wineman, S., Rajagopal, K.R., and Lee, D.W., A boundary value problem in ground water motion analysis-Comparison of the prediction based on Darcy’s law and the continuum theory of mixtures, Mat. Models Methods Appl. Sci., 3, 231–48 (1993).

    MathSciNet  MATH  CrossRef  Google Scholar 

  38. Parker, K.H., Metha, R.V., and Caro, C.G., Steady flow in porous, elastic deformable materials, Trans. ASME E: J. Appl. Mech., 54, 794–800 (1987).

    CrossRef  Google Scholar 

  39. Preziosi, L., The theory of deformable porous media and its applications to composite materials manufacturing, Surv. Math. Ind., 6, 167–214 (1996).

    MathSciNet  MATH  Google Scholar 

  40. Preziosi, L., Joseph, D.D., and Beavers, G.S., Infiltration in initially dry, deformable porous media, Int. J. Multiphase Flows, 22, 1205–22 (1996).

    MATH  CrossRef  Google Scholar 

  41. Puslow, D., and Child, R., Autoclave moulding of carbon-fiber reinforcing epoxies, Composites, 17, 127–36 (1986).

    CrossRef  Google Scholar 

  42. Rajagopal, K.R., and Tao, L.Mechanics of Mixtures, World Scientific (1995).

    MATH  Google Scholar 

  43. Rajagopal, K.R., Wineman, A.S., and Gandhi, M.V., On boundary conditions for a certain class of problems in mixture theory, Int. J. Eng. Sci., 24, 1453–63 (1986).

    MathSciNet  MATH  CrossRef  Google Scholar 

  44. Rudd, C.D., and Kendall, K.N., Towards a manufacturing technology for high-volume production of components, Proc. Inst. Mech. Eng., 206, 77–91 (1992).

    Google Scholar 

  45. Rudd, C.D., Long, A.C., Kendall, K.N., and Mangin, C.G.E.Liquid moulding Technologies, Woodhead Publishing Limited (1997).

    CrossRef  Google Scholar 

  46. Rudd, C.D., Owen, M.J., and Middleton, V., Effects of process variables on cycle time during resin transfer moulding for high volume manufacture, Mater. Sci. Tech., 6, 656–65 (1990).

    CrossRef  Google Scholar 

  47. Saffman, P.G., On the boundary condition at the interface of a porous medium, Studies in Appl. Math., 1, 93–101 (1971).

    Google Scholar 

  48. Saunders, R.A., Lekakou, C., and Bader, M.G., Compression of fiber plain woven cloths in the processing of polymer composites, Composites A, 29A, 443–54 (1998).

    CrossRef  Google Scholar 

  49. Sommer, J.L., and Mortensen, A., Forced unidirectional infiltration in deformable porous media, J. Fluid Mech., 311, 193–215 (1996).

    CrossRef  Google Scholar 

  50. Tao, L., and Rajagopal, K.R., On boundary conditions in mixture theory, in Recent Advances in Elasticity and Viscoelasticity, edited by K.R. Rajagopal, World Scientific (1994).

    Google Scholar 

  51. Trevino, L., Rupel, K., Young, W.B., Liu, M.J., and Lee, L.J., Analysis of resin injection moulding in moulds with preplaced fiber mats. I: Permeability and compressibility measurements, Polymer Compos., 12, 20–9 (1991).

    CrossRef  Google Scholar 

  52. Upadhyay, R.K., and Liang, E.W., Consolidation of advanced composites having volatile generation, Polymer Compos., 12, 417–29 (1991).

    CrossRef  Google Scholar 

  53. Yoo, Y.E., and Lee, W. I., Numerical simulation of resin transfer mold filling process using the boundary element method, Polymer Compos., 17, 368–74 (1996).

    CrossRef  Google Scholar 

  54. Young, W.B., Three—dimensional non—isothermal mold filling simulations in resin transfer mouldingPolymer Compos., 15, 118–27 (1994).

    CrossRef  Google Scholar 

  55. Young, W.B., Han, K., Fong, L.H., Lee, L.J., and Liu, M.J., Flow simulation in molds with preplaced fiber mats, Polymer Compos., 12, 391–403 (1991).

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farina, A., Preziosi, L. (2000). Infiltration Processes in Composite Materials Manufacturing: Modeling and Qualitative Results. In: Fasano, A. (eds) Complex Flows in Industrial Processes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1348-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1348-2_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7106-2

  • Online ISBN: 978-1-4612-1348-2

  • eBook Packages: Springer Book Archive